TY - JOUR A1 - Droste, Bernhard A1 - Komann, Steffen A1 - Wille, Frank A1 - Rolle, Annette A1 - Probst, Ulrich A1 - Schubert, Sven T1 - Consideration of aging mechanism influence on transport safety of dual purpose casks for spent nuclear fuel of HLW JF - Packaging, transport, storage & security of radioactive materials (RAMTRANS) N2 - When storage of spent nuclear fuel or high level waste is carried out in dual purpose casks (DPC), the effects of aging on safety relevant DPC functions and properties have to be managed in a way that a safe transport after the storage period of several decades is capable and can be justified and certified permanently throughout that period. The effects of aging mechanisms (e.g. radiation, different corrosion mechanisms, stress relaxation, creep, structural changes and degradation) on the transport package design safety assessment features have to be evaluated. Consideration of these issues in the DPC transport safety case will be addressed. Special attention is given to all cask components that cannot be directly inspected or changed without opening the cask cavity, like the inner parts of the closure system and the cask internals, like baskets or spent fuel assemblies. The design criteria of that transport safety case have to consider the operational impacts during storage. Aging is not the subject of technical aspects only but also of ‘intellectual’ aspects, like changing standards, scientific/technical knowledge development and personal as well as institutional alterations. Those aspects are to be considered in the management system of license holders and in appropriate design approval update processes. The paper addresses issues that are subject of an actual International Atomic Energy Agency TECDOC draft 'Preparation of a safety case for a dual purpose cask containing spent nuclear fuel'. KW - Transport KW - Storage KW - Spent fuel KW - High-level waste KW - Aging KW - Metal seals KW - Transport and storage casks KW - Spent nuclear fuel KW - Aging mechanisms KW - Corrosion KW - Safety assessment PY - 2014 DO - https://doi.org/10.1179/1746510914Y.0000000070 SN - 1746-5095 SN - 1746-5109 SN - 0957-476X VL - 25 IS - 3-4 SP - 105 EP - 112 PB - Ramtrans Publ. CY - Ashford AN - OPUS4-33428 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Müller, Lars A1 - Schilling, O. A1 - Ballheimer, Viktor A1 - Wille, Frank A1 - Komann, Steffen T1 - Assessment strategy of numerical analyses of RAM package components - 14619 T2 - WM2014 Conference (Proceedings) N2 - In Germany current package design safety cases include more and more advanced numerical methods, e. g. finite element analysis (FEA), often in combination with local concepts of strength evaluation of the structure. This approach requires extensive modeling and verification procedures. As a consequence the efforts of authority assessment of design safety analysis increase as well. Only the check of pre- and post-data of numerical calculations is often not sufficient for the safety assessment. On the other hand own analyses of the mechanical problem by performing an Independent numerical modeling and analyzing is not always realizable. Therefore it is necessary to look for optimized procedures of the assessment, without loss of safety. This paper shows possibilities for the assessment strategy of numerical analyses with focus on simple analytical approaches as comparative calculations. Such approaches can be helpful to support evaluation of numerical calculations in the whole assessment procedure. Three examples are considered to Show which possibilities and limits exist to support the assessment of numerical analyses using analytical comparative calculations. Two examples of bolt and lid analysis show the influence of component and boundary stiffness on the results. Thickness to length/width ratios are partially exceeded and only fixed or free boundary conditions can be analyzed analytical. Nevertheless These analytical approaches can help to evaluate the numerical results for the assessment. The example of a trunnion demonstrates the limits of analytical approaches. The trunnion shows a complex deformation behavior and local stresses. A single basic theory isn’t matching and a construct of several approaches is not useable for calculations of local stresses. Therefore numerical calculations during assessment are necessary. Analytical approaches are not always purposeful but often effective to reduce the effort of assessment for numerical analysis of complex and safety relevant components of RAM packages. T2 - WM2014 Conference CY - Phoenix, Arizona, USA DA - 02.03.2014 PY - 2014 SN - 978-0-9836186-3-8 SP - Paper 14619, 1 EP - 14 AN - OPUS4-31047 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -