TY - JOUR A1 - Komann, Steffen A1 - Wille, Frank T1 - Zur Prüfung verpflichtet - Die BAM-Gefahrgutregel 016 (BAM-GGR 016) N2 - Im Gegensatz zu den zulassungspflichtigen Versandstücken für die gemäß der gefahrgutrechtlichen Regelwerksanforderungen eine behördlich ausgestellte Zulassung erforderlich ist, ist für die prüfpflichtigen Versandstücke lediglich eine behördliche Anerkennung und Überwachung des Managementsystems für die Auslegung, Herstellung, Prüfung, Dokumentation, den Gebrauch, die Wartung und Inspektion erforderlich. In der Bundesrepublik Deutschland ist gemäß den Festlegungen in der Gefahrgutverordnung Straße, Eisenbahn und Binnenschifffahrt die Bundesanstalt für Materialforschung und -prüfung (BAM) zuständig für die Anerkennung und Überwachung von Managementsystemen. KW - Gefahrgut KW - Radioaktive Stoffe KW - Normen KW - Regeln PY - 2018 SN - 0944-6117 VL - 2018 IS - 1-2 SP - 10 EP - 12 PB - Springer Fachmedien München GmbH CY - München AN - OPUS4-44168 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Komann, Steffen A1 - Gröke, Carsten A1 - Wille, Frank T1 - Assessment of quality management for transport packages not requiring authority design approval N2 - The majority of transports of radioactive materials are carried out in packages which don’t need a package design approval of a competent authority. Low active radioactive materials are transported in such kind of packages e.g. in the medical and pharmaceutical industry and in the nuclear industry as well. In Germany the decision to phase out nuclear energy leads to a strong demand for packages to transport low and middle active radioactive waste due to the dismantling and decommissioning of nuclear power plants. According to IAEA regulations the “non-competent authority approved package types” are the excepted packages and the industrial packages of Type IP-1, IP-2 and IP-3 and of Type A. For the packages of Type IP-2, IP-3 and Type A an assessment by the German competent authority is required for the quality management for the design, manufacture, testing, documentation, use, maintenance and inspection. In general a compliance audit of the manufacturer of the packaging is required during this assessment procedure. T2 - Waste Management Conference 2018 CY - Phoenix, USA DA - 18.3.2018 KW - Radioactive material KW - Quality management system KW - Transport packages PY - 2018 SP - Article 18194, 1 EP - 7 AN - OPUS4-44170 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Müller, Lars A1 - Schönfelder, Thorsten A1 - Komann, Steffen A1 - Ballheimer, Viktor A1 - Wille, Frank ED - Müller, Lars T1 - Assessment experience on packages loaded with damaged spent nuclear fuel for transport after storage N2 - In 2017 the first German package approval certificate was issued for a dual purpose cask (DPC) design with encapsulated damaged spent nuclear fuel. At the Bundesanstalt für Materialforschung und -prüfung (BAM) a comprehensive assessment procedure was carried out with respect to the mechanical and thermal design, the containment design and quality assurance for manufacturing and operation. Main objective of this procedure was to verify the Package Design Safety Report (PDSR) fulfils the requirements according to the IAEA regulations SSR-6. Until now only standard spent nuclear fuel assemblies were designated for interim storage and transports. Due to nuclear phase out in Germany all other kinds of SNF in particular damaged fuel has to be packed. Therefore specific requirements have to be considered in accordance with international experiences written in IAEA technical reports. In Germany damaged spent nuclear fuel (DSNF) needs a tight encapsulation with special encapsulations and clearly defined properties. Due to the limited amount of DSNF these encapsulations are designed for storage and transport in existing packages. From the assessment experience it has been seen, corresponding PDSR need an extensively expansion to cover the design of these encapsulations and their influences on the package. Then such well-defined encapsulations can be handled like standard fuel assemblies. The main difference to standard package components is, encapsulations with permanent closure achieve their specified condition not after manufacturing but only during operation after loading and closing. Thus specific handling instruction and test procedures are necessary especially for welding, where BAM is able to survey the quality of this first part of operation. T2 - 11th International Conference on the Transport, Storage and Disposal of Radioactive Materials CY - London, UK DA - 15.05.2018 KW - Assessment KW - Dual purpose cask KW - Spent nuclear fuel PY - 2018 SP - Paper 18524, 1 EP - 8 AN - OPUS4-45258 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gröke, Carsten A1 - Neumann, Martin A1 - Komann, Steffen A1 - Wille, Frank T1 - Anforderungen an die Bauartprüfung und Maßnahmen zur Qualitätssicherung für nicht zulassungspflichtige Versandstücke N2 - Überblick über die Regelwerksanforderungen an die Bauarten von nicht zulassungspflichtigen Versandstücken, sowie die zu erfüllenden Maßnahmen zur Qualitätssicherung für die Auslegung, die Herstellung und den Betrieb. T2 - KONTEC 2019 CY - Dresden, Germany DA - 27.03.2019 KW - Radioaktiv KW - Beförderung KW - IP-2 KW - IP-3 KW - Typ A KW - Anerkennung KW - Bauartprüfung PY - 2019 SP - 136 EP - 142 AN - OPUS4-56343 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Komann, Steffen A1 - Ballheimer, Viktor A1 - Quercetti, Thomas A1 - Scheidemann, Robert A1 - Wille, Frank T1 - Design assessment by bam of a new package design for the transport of snf from a german research reactor N2 - For disposal of the German research reactor of the Technical University Munich FRM II a new transport and storage cask design was under approval assessment by the German authorities. The Bundesanstalt für Materialforschung und -prüfung (BAM) assessed the mechanical and thermal package safety and performed drop tests. The activity release approaches and subjects of quality assurance and surveillance for manufacturing and operation of the package were assessed by BAM as well. The cask body is made of ductile cast iron and closed by two bolted lid systems with metal seals. The material of the lids is stainless steel. On each end of the cask a wood-filled impact limiter is installed to reduce impact loads to the cask under drop test conditions. In the cavity of the cask a basket for five spent fuel assemblies is arranged. For the safety case a combination of experimental testing and analytical/numerical calculations were applied. In total, four drop tests were carried out at the BAM large drop test facility. Two tests were carried out as a full IAEA drop test sequence consisting of a 9m drop test onto an unyielding target and a 1m puncture bar drop test. The other two drop test were performed as single 9m drop tests and completed by additional analyses for considering the effects of an IAEA drop test sequence. The main objectives of the drop tests were the investigation of the integrity of the package and its safety against release of radioactive material as well as the test of the fastening system of the impact limiters. Furthermore, the acceleration and strain signals measured during the tests were used for the verification of Finite-Element-Analysis (FEA) used for the safety analysis of the package design. The finite-element models incorporated in the package design safety report include the cask body, the lid system, the inventory and the impact limiters with the fastening system. In this context special attention was paid to the modeling of the encapsulated wood-filled impact limiters. Additional calculations using the verified numerical models were done by the applicant and assessed by BAM to investigate e.g. the brittle fracture of the cask body made of ductile cask iron within the package design approval procedure. This paper describes the package design assessment from the view of the competent authority BAM including the applied assessment strategy, the conducted drop tests and the additional calculations by using numerical and analytical methods. T2 - 19th International Symposium on the Packaging and Transportation of Radioactive Materials PATRAM 2019 CY - New Orleans, LA, USA DA - 04.08.2019 KW - Numerical modelling KW - Drop test KW - Assessment method KW - Ductile cast iron KW - Package design KW - Experimental testing PY - 2019 SP - Paper 1176, 1 AN - OPUS4-49054 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Komann, Steffen A1 - Ballheimer, Viktor A1 - Quercetti, Thomas A1 - Scheidemann, Robert A1 - Wille, Frank T1 - Design assessment by BAM of a new package design for the transport of SNF from a German research reactor N2 - For disposal of the German research reactor of the Technical University Munich FRM II a new transport and storage cask design was under approval assessment by the German authorities. The Bundesanstalt für Materialforschung und -prüfung (BAM) assessed the mechanical and thermal package safety and performed drop tests. The activity release approaches and subjects of quality assurance and surveillance for manufacturing and operation of the package were assessed by BAM as well. The cask body is made of ductile cast iron and closed by two bolted lid systems with metal seals. The material of the lids is stainless steel. On each end of the cask a wood-filled impact limiter is installed to reduce impact loads to the cask under drop test conditions. In the cavity of the cask a basket for five spent fuel assemblies is arranged. For the safety case a combination of experimental testing and analytical/numerical calculations were applied. In total, four drop tests were carried out at the BAM large drop test facility. Two tests were carried out as a full IAEA drop test sequence consisting of a 9m drop test onto an unyielding target and a 1m puncture bar drop test. The other two drop test were performed as single 9m drop tests and completed by additional analyses for considering the effects of an IAEA drop test sequence. The main objectives of the drop tests were the investigation of the integrity of the package and its safety against release of radioactive material as well as the test of the fastening system of the impact limiters. Furthermore, the acceleration and strain signals measured during the tests were used for the verification of Finite-Element-Analysis (FEA) used for the safety analysis of the package design. The finite-element models incorporated in the package design safety report include the cask body, the lid system, the inventory and the impact limiters with the fastening system. In this context special attention was paid to the modeling of the encapsulated wood-filled impact limiters. Additional calculations using the verified numerical models were done by the applicant and assessed by BAM to investigate e.g. the brittle fracture of the cask body made of ductile cask iron within the package design approval procedure. This paper describes the package design assessment from the view of the competent authority BAM including the applied assessment strategy, the conducted drop tests and the additional calculations by using numerical and analytical methods. T2 - PATRAM 2019 CY - New Orleans, USA DA - 04.08.2019 KW - Numerical modelling KW - Drop test KW - Assessment method KW - Ductile cast iron KW - Package design KW - Experimental testing PY - 2019 AN - OPUS4-49044 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Komann, Steffen A1 - Reiche, I. A1 - Ramsay, J. A1 - Pilecki, L. A1 - Hirose, M. A1 - Fukuda, T. A1 - Moutarde, M. A1 - Fiaccabrino, V. A1 - Malesys, P. A1 - Nöring, R. T1 - Development of the IAEA safety guide_format and content of the package design safety report_PDSR for the transport of radioactive material N2 - Since 2005, several European countries, coordinated by the European Association of Competent Authorities (EACA), have been developing a guide on contents and structure of the documentation demonstrating the compliance with the regulations for packages for the transport of radioactive material (package design safety report, PDSR). This guide has been periodically improved, considering feedback from Designers and authorities. Taking into account the successful application of this guide in Europe, in 2013 the International Atomic Energy Agency (IAEA) decided to establish a similar guide as an IAEA document for promotion of worldwide use. The development of this IAEA guide started from the latest version of the European PDSR guide. In 2016/2017, during a 120-day review period, comments on the draft were received from member states and international organizations. These were incorporated into the draft in a series of meetings in 2017. In another meeting in December 2018 the draft was updated to be in line with the latest revision of the IAEA Regulations for the Safe Transport of Radioactive Material (SSR-6). In this process the draft has been improved significantly, regarding structure as well as implementation of a graded approach depending on the package type, and clarified. This paper points to the major considerations in developing the guide and important improvements over the last version of the European PDSR guide. T2 - 19th International Symposium on the Packaging and Transportation of Radioactive Materials PATRAM 2019 CY - New Orleans, LA, USA DA - 04.08.2019 KW - IAEA KW - Safety report KW - Radioactive material KW - European Guide KW - Guidance material KW - Package types KW - Package design PY - 2019 SP - Paper 1172, 1 EP - 7 AN - OPUS4-49097 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Linnemann, Konrad A1 - Müller, Lars A1 - Schönfelder, Thorsten A1 - Komann, Steffen A1 - Wille, Frank T1 - Authority Experience during Design Approval Procedure for Packages Loaded with Special Encapsulations for Damaged Spent Nuclear Fuel N2 - The first German package design approval certificate for a dual purpose cask intended for loading with damaged spent nuclear fuel was issued recently. BAM as part of the competent authority system in Germany carried out a comprehensive assessment procedure with respect to the mechanical and thermal design, the release of radioactive material and the quality assurance aspects of manufacturing and operation. Packages for the transport and storage of radioactive material have been assessed by BAM for many years, thus the common assessment procedure is well-known and good practice. Up to now only SNF without defects or HLW with well-defined properties were designated for long-term Interim storage and transports afterwards. Due to Germany’s nuclear phase out all other kinds of spent nuclear fuel in particular damaged spent nuclear fuel shall be packed as well. Damaged spent nuclear fuel needs a tight closure with Special encapsulations and clearly defined properties in Germany. In addition, these encapsulations shall be long-term durable, because they are not accessible after loading in a packaging within periodical inspections. The main difference to Standard package components is that encapsulations with a permanent closure achieve their specified conditions not after manufacturing but only during operation, after loading and closing. To ensure compliance with the specific conditions, special measures for quality assurance are necessary during operation of each encapsulation, e.g. drying and sealing, which were assessed by BAM. The present paper gives an overview of the conducted assessment from BAM and point out the findings concerning to the special closure lid of the approved encapsulation, which is screwed and welded. A wide verification concept is necessary to show the specific tightness under transport conditions. Together with quality assurance measures during first operation steps these encapsulations with damaged spent nuclear fuel can be handled like standard fuel assemblies in approved package designs. T2 - International Conference on the Management of Spent Fuel from Nuclear Power Reactors CY - Vienna, Austria DA - 24.06.2019 KW - Transport package KW - Design approval KW - Spent nuclear fuel KW - Special encapsulation PY - 2019 SP - 1 EP - 9 AN - OPUS4-48749 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schönfelder, Thorsten A1 - Müller, Lars A1 - Komann, Steffen A1 - Wille, Frank ED - Schönfelder, Thorsten T1 - Design assessment of a dual purpose cask for damaged spent nuclear fuel N2 - German package design approvals were granted recently for dual purpose casks (DPC) intended for loading with encapsulated damaged spent nuclear fuel (DSNF). Comprehensive assessment procedures were carried out by the authority BAM with respect to the mechanical and thermal package design, the activity release of radioactive material and quality assurance aspects for manufacturing and operation of each packaging. The objective of each procedure was to verify the Package Design Safety Report (PDSR) and the relevant guidelines fulfils the requirements of the IAEA regulations. Previous approvals of German SNF package designs consider mainly standard fuel assemblies with defined specifications and properties for transport and interim storage. Due to the nuclear power phase-out in Germany all kinds of SNF, e.g. damaged spent fuel rods shall be packed in DPC now. Therefore specific requirements shall be considered in accordance with international experiences including IAEA technical reports. The main requirement for DSNF is a tight encapsulation with specific defined properties under transport and storage conditions. Due to the interim storage period of currently up to 40 years the encapsulation with DSNF in the casks shall also be long term durable. Thus specific loading and drying procedures are necessary and had to be qualified during the approval process. BAM assessed these drying procedures and could confirm the long-term behaviour of the encapsulation and the suitability of the drying equipment. This special equipment was qualified in a “cold handling”. In addition, it was shown that the behaviour of the test equipment used in the qualification process was comparable with the original equipment, e.g. test fuel rods or test encapsulation. In the development of the drying process, experience was obtained in how to put the requirements of the IAEA regulations and related IAEA technical reports into practice. The paper gives an overview of approval assessment and testing experience made by BAM and point out the main resulting requirements on drying processes for these kinds of encapsulations with DSNF. T2 - Proceedings of the 19th International Symposium on the Packaging and Transportation of Radioactive Materials PATRAM 2019 CY - New Orleans, USA DA - 04.08.2019 KW - Assessment KW - Dual purpose cask KW - Spent nuclear fuel PY - 2019 SP - Paper 1204, 1 EP - 10 AN - OPUS4-48685 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Komann, Steffen A1 - Ballheimer, Viktor A1 - Quercetti, Thomas A1 - Scheidemann, Robert A1 - Wille, Frank T1 - Mechanical and thermal assessment by BAM of a new package design for the transport of SNF from a german research reactor N2 - For disposal of the research reactor of the Technical University Munich FRM II a new transport and storage cask design was under approval assessment by the German authorities on the basis of International Atomic Energy Agency (IAEA) requirements. The cask body is made of ductile cast iron and closed by two bolted lid systems with metal seals. The material of the lids is stainless steel. On each end of the cask the wood-filled impact limiters are installed to reduce impact loads to the cask under drop test conditions. In the cavity of the cask a basket for five spent fuel elements is arranged. This design has been assessed by the Bundesanstalt für Materialforschung und -prüfung (BAM) in view to the mechanical and thermal safety analyses, the activity release approaches, and subjects of quality assurance and surveillance for manufacturing and operation of the package. For the mechanical safety analyses of the package a combination of experimental testing and analytical/numerical calculations were applied. In total, four drop tests were carried out at the BAM large drop test facility. Two tests were carried out as a full IAEA drop test sequence consisting of a 9m drop test onto an unyielding target and a 1m puncture bar drop test. The other two drop tests were performed as single 9m drop tests and completed by additional analyses for considering the effects of an IAEA drop test sequence. The main objectives of the drop tests were the investigation of the integrity of the package and its safety against release of radioactive material as well as the test of the fastening system of the impact limiters. Furthermore, the acceleration and strain signals measured during the tests were used for the verification of finite-element (FE) models applied in the safety analysis of the package design. T2 - Pressure Vessels & Piping Conference 2020 CY - Online meeting DA - 03.08.2020 KW - Mechanik KW - radioaktives Material KW - Transportbehälter KW - Antragsverfahren KW - Zulassungen KW - Typ-B Versandstück KW - Thermik PY - 2020 VL - 2020 SP - 1 EP - 7 PB - ASME CY - New York AN - OPUS4-51103 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -