TY - JOUR A1 - Komann, Steffen A1 - Droste, Bernhard A1 - Wille, Frank T1 - Transport of large nuclear power plant components: experiences in mechanical design assessment N2 - In the course of decommissioning of power plants in Germany large nuclear components (steam generator, reactor pressure vessel) must be transported over public traffic routes to interim storage facilities, where they are dismantled or stored temporarily. Since it concerns surface contaminated objects or low specific activity materials, a safety evaluation considering the IAEA transport regulations mainly for industrial packages (type IP-2) is necessary. For these types of industrial packages the requirements from normal transport conditions are to be covered for the mechanical proof. For example, a free drop of the package from a defined height, in dependence of its mass, onto an unyielding target, and a stacking test are required. Since physical drop tests are impossible generally due to the singularity of such 'packages', a calculation has to be performed, preferably by a complex numerical analysis. The assessment of the loads takes place on the basis of local stress distributions, also with consideration of radiation induced brittleness of the material and with consideration of recent scientific investigation results. Large nuclear components have typically been transported in an unpackaged manner, so that the external shell of the component provides the packaging wall. The investigation must consider the entire component including all penetration areas such as manholes or nozzles. According to the present IAEA regulations the drop position is to be examined, which causes the maximum damage to the package. In the case of a transport under special arrangement a drop only in an attitude representing the usual handling position (administratively controlled) is necessary. If dose rate values of the package are higher than maximum allowable values for a public transport, then it is necessary that additional shielding construction units are attached to the large component. KW - Radioactive material KW - Large components KW - Decommissioning KW - Nuclear power plant KW - Mechanical assessment KW - Numerical analysis PY - 2009 U6 - https://doi.org/10.1179/174650909X12543085665266 SN - 1746-5095 SN - 1746-5109 SN - 0957-476X VL - 20 IS - 4 SP - 149 EP - 153 PB - Ramtrans Publ. CY - Ashford AN - OPUS4-20820 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Komann, Steffen A1 - Wille, Frank A1 - Droste, Bernhard T1 - Gap analysis by periodical reviews of transport package design safety reports of German SNF/HLW dual purpose casks N2 - Storage of spent nuclear fuel and high-level waste in dual purpose casks (DPC) is related with the challenge of maintaining safety for transportation over several decades of storage. Beside consideration of aging mechanisms by appropriate design, material selection and operational controls to assure technical reliability by aging management measures, an essential issue is the continuous control and update of the DPC safety case. Not only the technical objects are subject of aging but also the safety demonstration basis is subject of “aging” due to possible changes of regulations, standards and scientific/technical knowledge. The basic document, defining the transport safety conditions, is the package design safety report (PDSR) for the transport version of the DPC. To ensure a safe transport in future to a destination which is not known yet (because of not yet existing repository sites) periodical reviews of the PDSR, in connection with periodic renewals of package design approval certificates, have to be carried out. The main reviewing tool is a gap analysis. A gap analysis for a PDSR is the assessment of the state of technical knowledge, standards and regulations regarding safety functions of structures, systems and components. T2 - 18th International Symposium on the Packaging and Transportation of Radioactive Materials PATRAM2016 CY - Kobe, Japan DA - 18.09.2016 KW - Radioactive material KW - Gap analysis KW - Periodical review KW - Approved packages PY - 2016 SP - Paper 5004, 1 EP - 9 AN - OPUS4-37641 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Komann, Steffen A1 - Gröke, Carsten A1 - Wille, Frank T1 - Assessment of quality management for transport packages not requiring authority design approval N2 - The majority of transports of radioactive materials are carried out in packages which don’t need a package design approval of a competent authority. Low active radioactive materials are transported in such kind of packages e.g. in the medical and pharmaceutical industry and in the nuclear industry as well. In Germany the decision to phase out nuclear energy leads to a strong demand for packages to transport low and middle active radioactive waste due to the dismantling and decommissioning of nuclear power plants. According to IAEA regulations the “non-competent authority approved package types” are the excepted packages and the industrial packages of Type IP-1, IP-2 and IP-3 and of Type A. For the packages of Type IP-2, IP-3 and Type A an assessment by the German competent authority is required for the quality management for the design, manufacture, testing, documentation, use, maintenance and inspection. In general a compliance audit of the manufacturer of the packaging is required during this assessment procedure. T2 - Waste Management Conference 2018 CY - Phoenix, USA DA - 18.3.2018 KW - Radioactive material KW - Quality management system KW - Transport packages PY - 2018 SP - Article 18194, 1 EP - 7 AN - OPUS4-44170 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rolle, Annette A1 - Komann, Steffen A1 - Wille, Frank T1 - Ageing aspect in design approval of special form radioactive material N2 - In accordance with the IAEA transport regulations, the design of special form radioactive material (SFRM) shall resist a severe transport accident without undue loss or dispersal of radioactive material. The safety assessment for design approval includes besides the program for physical tests (impact, percussion, bending and heat test) also the evaluation of the management system for design, manufacture, testing, documentation, use, maintenance, and inspection. SFRM source design plus management system shall ensure, that every specimen of the approved design is able to survive the severe mechanical and thermal tests at any time of its SFRM-working life. Due to the long-term use of SFRM designs in most cases, the assessment of the source ageing behavior is an important aspect in the approval procedure. Different fields of application imply a wide range of environmental conditions, from clean room atmosphere to highly aggressive industrial conditions. Besides of radioactive content, corrosion is a main factor for possible SFRM design degradation. Although the IAEA Advisory Material SSG-26 already implies an indication of the need for considering ageing mechanisms, suitable amendments in the regulatory requirements of SSR-6 should be introduced to make the approval procedure more transparent and help to reduce rounds of questions by the authority. A supplementary requirement for considering of ageing mechanisms could be a helpful contribution to an international harmonization of the approval procedure. This paper will describe major influencing factors to be considered to assess the ageing behavior of a SFRM design and will identify the need for a regulatory specification of a SFRM-working life as basis for the assessment of the SFRM design regarding time-dependent weakening. A proposal for an explicit requirement for consideration of ageing mechanisms in safety assessment of SFRM, which should be considered in the ongoing SSR-6 revision cycle, will be explained. T2 - PATRAM22 Conference CY - Juan-Les-Pins, Antibes, France DA - 11.06.2023 KW - Ttransport KW - Radioactive material KW - Sealed sources KW - Ageing PY - 2023 SP - 1 EP - 6 AN - OPUS4-57786 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -