TY - JOUR A1 - Komann, Steffen A1 - Neumann, Martin A1 - Ballheimer, Viktor A1 - Wille, Frank A1 - Weber, Mike A1 - Qiao, Linan A1 - Droste, Bernhard T1 - Mechanical assessment within type B packages approval: application of static and dynamic calculation approaches N2 - This paper demonstrates exemplarily how numerical and experimental approaches can be combined reasonably in mechanical assessment of package integrity according to the IAEA regulations. The paper also concentrates on the question about how static mechanical approaches can be applied, and what their problems are in relation to dynamic calculation approaches. Under defined impact tests, which represent accident transport conditions, the package has to withstand impact loading, e.g. resulting from a 9 m free drop onto an unyielding target in sequence with a 1 m puncture drop test. Owing to the local character of the interaction between the puncture bar and the cask body, it is possible to develop a dynamic numerical model for the 1 m puncture drop which allows an appropriate simulation of the interaction area. Results from existing experimental drop tests with prototype or small scale cask models can be used for verification and validation of applied analysis codes and models. The link between analysis and experimental drop testing is described exemplarily by considering a regulatory 1 m puncture bar drop test onto the cask body of a recently approved German high level waste transport package. For the 9 m drop test of the package, it is difficult to develop a dynamic numerical model of the package due to the complexity of the interaction between cask body, impact limiters and unyielding target. Dynamic calculations require an extensive verification with experimental results. The simulation of a 9 m drop of a package with impact limiters is thereby often more complex than the simulation of a 1 m puncture drop onto the cask body. A different approximation method can be applied for the consideration of dynamic effects on the impact loading of the package. In a first step, maximum impact force and rigid body deceleration of the cask body during the impact process can be calculated with simplified numerical tools. This rigid body deceleration can subsequently be applied on a verified static numerical model. Dynamic effects, which cannot be covered by the static numerical analysis, have therefore to be considered by using an additional dynamic factor. The paper describes this approach exemplarily for a 9 m horizontal drop of a typical spent fuel cask design. KW - Package assessment KW - Package KW - Packaging KW - Structural analysis PY - 2011 U6 - https://doi.org/10.1179/1746510911Y.0000000012 SN - 1746-5095 SN - 1746-5109 SN - 0957-476X VL - 22 IS - 4 SP - 179 EP - 183 PB - Ramtrans Publ. CY - Ashford AN - OPUS4-26448 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -