TY - JOUR A1 - Komann, Steffen A1 - Wille, Frank T1 - Zur Prüfung verpflichtet - Die BAM-Gefahrgutregel 016 (BAM-GGR 016) N2 - Im Gegensatz zu den zulassungspflichtigen Versandstücken für die gemäß der gefahrgutrechtlichen Regelwerksanforderungen eine behördlich ausgestellte Zulassung erforderlich ist, ist für die prüfpflichtigen Versandstücke lediglich eine behördliche Anerkennung und Überwachung des Managementsystems für die Auslegung, Herstellung, Prüfung, Dokumentation, den Gebrauch, die Wartung und Inspektion erforderlich. In der Bundesrepublik Deutschland ist gemäß den Festlegungen in der Gefahrgutverordnung Straße, Eisenbahn und Binnenschifffahrt die Bundesanstalt für Materialforschung und -prüfung (BAM) zuständig für die Anerkennung und Überwachung von Managementsystemen. KW - Gefahrgut KW - Radioaktive Stoffe KW - Normen KW - Regeln PY - 2018 SN - 0944-6117 VL - 2018 IS - 1-2 SP - 10 EP - 12 PB - Springer Fachmedien München GmbH CY - München AN - OPUS4-44168 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Komann, Steffen A1 - Gröke, Carsten A1 - Wille, Frank T1 - Assessment of quality management for transport packages not requiring authority design approval N2 - The majority of transports of radioactive materials are carried out in packages which don’t need a package design approval of a competent authority. Low active radioactive materials are transported in such kind of packages e.g. in the medical and pharmaceutical industry and in the nuclear industry as well. In Germany the decision to phase out nuclear energy leads to a strong demand for packages to transport low and middle active radioactive waste due to the dismantling and decommissioning of nuclear power plants. According to IAEA regulations the “non-competent authority approved package types” are the excepted packages and the industrial packages of Type IP-1, IP-2 and IP-3 and of Type A. For the packages of Type IP-2, IP-3 and Type A an assessment by the German competent authority is required for the quality management for the design, manufacture, testing, documentation, use, maintenance and inspection. In general a compliance audit of the manufacturer of the packaging is required during this assessment procedure. T2 - Waste Management Conference 2018 CY - Phoenix, USA DA - 18.3.2018 KW - Radioactive material KW - Quality management system KW - Transport packages PY - 2018 SP - Article 18194, 1 EP - 7 AN - OPUS4-44170 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Müller, Lars A1 - Schönfelder, Thorsten A1 - Komann, Steffen A1 - Ballheimer, Viktor A1 - Wille, Frank ED - Müller, Lars T1 - Assessment experience on packages loaded with damaged spent nuclear fuel for transport after storage N2 - In 2017 the first German package approval certificate was issued for a dual purpose cask (DPC) design with encapsulated damaged spent nuclear fuel. At the Bundesanstalt für Materialforschung und -prüfung (BAM) a comprehensive assessment procedure was carried out with respect to the mechanical and thermal design, the containment design and quality assurance for manufacturing and operation. Main objective of this procedure was to verify the Package Design Safety Report (PDSR) fulfils the requirements according to the IAEA regulations SSR-6. Until now only standard spent nuclear fuel assemblies were designated for interim storage and transports. Due to nuclear phase out in Germany all other kinds of SNF in particular damaged fuel has to be packed. Therefore specific requirements have to be considered in accordance with international experiences written in IAEA technical reports. In Germany damaged spent nuclear fuel (DSNF) needs a tight encapsulation with special encapsulations and clearly defined properties. Due to the limited amount of DSNF these encapsulations are designed for storage and transport in existing packages. From the assessment experience it has been seen, corresponding PDSR need an extensively expansion to cover the design of these encapsulations and their influences on the package. Then such well-defined encapsulations can be handled like standard fuel assemblies. The main difference to standard package components is, encapsulations with permanent closure achieve their specified condition not after manufacturing but only during operation after loading and closing. Thus specific handling instruction and test procedures are necessary especially for welding, where BAM is able to survey the quality of this first part of operation. T2 - 11th International Conference on the Transport, Storage and Disposal of Radioactive Materials CY - London, UK DA - 15.05.2018 KW - Assessment KW - Dual purpose cask KW - Spent nuclear fuel PY - 2018 SP - Paper 18524, 1 EP - 8 AN - OPUS4-45258 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Komann, Steffen A1 - Ballheimer, Viktor A1 - Quercetti, Thomas A1 - Scheidemann, Robert A1 - Wille, Frank T1 - Mechanical and thermal assessment by BAM of a new package design for the transport of SNF from a german research reactor N2 - For disposal of the research reactor of the Technical University Munich FRM II a new transport and storage cask design was under approval assessment by the German authorities on the basis of International Atomic Energy Agency (IAEA) requirements. The cask body is made of ductile cast iron and closed by two bolted lid systems with metal seals. The material of the lids is stainless steel. On each end of the cask the wood-filled impact limiters are installed to reduce impact loads to the cask under drop test conditions. In the cavity of the cask a basket for five spent fuel elements is arranged. This design has been assessed by the Bundesanstalt für Materialforschung und -prüfung (BAM) in view to the mechanical and thermal safety analyses, the activity release approaches, and subjects of quality assurance and surveillance for manufacturing and operation of the package. For the mechanical safety analyses of the package a combination of experimental testing and analytical/numerical calculations were applied. In total, four drop tests were carried out at the BAM large drop test facility. Two tests were carried out as a full IAEA drop test sequence consisting of a 9m drop test onto an unyielding target and a 1m puncture bar drop test. The other two drop tests were performed as single 9m drop tests and completed by additional analyses for considering the effects of an IAEA drop test sequence. The main objectives of the drop tests were the investigation of the integrity of the package and its safety against release of radioactive material as well as the test of the fastening system of the impact limiters. Furthermore, the acceleration and strain signals measured during the tests were used for the verification of finite-element (FE) models applied in the safety analysis of the package design. T2 - Pressure Vessels & Piping Conference 2020 CY - Online meeting DA - 03.08.2020 KW - Mechanik KW - radioaktives Material KW - Transportbehälter KW - Antragsverfahren KW - Zulassungen KW - Typ-B Versandstück KW - Thermik PY - 2020 VL - 2020 SP - 1 EP - 7 PB - ASME CY - New York AN - OPUS4-51103 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Komann, Steffen A1 - Neumann, Martin A1 - Wille, Frank T1 - Transportbehälter für Klasse 7 - Ein Überblick N2 - Die Präsentation gibt einen Überblick über die Tranportbehälter der Klasse 7. Behandelt werden neben der Versandstückklassifikation auch die Anforderungen an diese Verpackungen gemäß der gefahrgutrechtlichen Vorschriften. T2 - 30. Münchner Gefahrguttage CY - Online meeting DA - 20.07.2020 KW - Gefahrgutrecht KW - Transportbehälter KW - Radioaktives Material KW - Zulassungspflichtige Versandstücke PY - 2020 AN - OPUS4-51104 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Komann, Steffen A1 - Wille, Frank A1 - Droste, Bernhard T1 - Gap analysis examples from periodical reviews of transport package design safety reports of SNF/HLW dual purpose casks N2 - Storage of spent nuclear fuel and high-level waste in dual purpose casks (DPC) is related with the challenge of maintaining safety for transportation over several decades of storage. Beside consideration of aging mechanisms by appropriate design, material selection and operational controls to assure technical reliability by aging management measures, an essential issue is the continuous control and update of the DPC safety case. Not only the technical objects are subject of aging but also the safety demonstration basis is subject of "aging" due to possible changes of regulations, standards and scientific/technical knowledge. The basic document, defining the transport safety conditions, is the package design safety report (PDSR) for the transport version of the DPC. To ensure a safe transport in future to a destination which is not known yet (because of not yet existing repository sites) periodical reviews of the PDSR, in connection with periodic renewals of package design approval certificates, have to be carried out. The main reviewing tool is a gap analysis. A gap analysis for a PDSR is the assessment of the state of technical knowledge, standards and regulations regarding safety functions of structures, systems and components. T2 - PSAM 12 - Probabilistic safety assessment and management CY - Honolulu, Hawaii, USA DA - 22.06.2014 KW - Dual Purpose Casks KW - Aging KW - Transportation KW - Periodical Review PY - 2014 UR - http://psam12.org/proceedings/paper/paper_259_1.pdf SP - Paper 259, 1 EP - 9 AN - OPUS4-32574 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Müller, Lars A1 - Komann, Steffen A1 - Wille, Frank A1 - Droste, Bernhard T1 - Sicherheitstechnische Begutachtung der strukturmechanischen Auslegung von Castor-Behältern N2 - Die Sicherheitsanforderungen, die an Behälter für den Transport radioaktiver Stoffe auf öffentlichen Verkehrswegen gestellt werden, orientieren sich an dem Gefährdungspotenzial des radioaktiven Inhalts. So müssen für den Transport abgebrannter Brennelemente oder hochradioaktiver Abfalle aus nuklearen Anlagen Behälter eingesetzt werden, die auch schweren Unfällen standhalten. Zu ihnen gehören z. B. die CASTOR®-Behälter (Cask for Storage and Transport of Radioactive Material). T2 - BTU Stahlbau-Symposium 2014 CY - Cottbus, Germany DA - 23.05.2014 PY - 2014 SN - 1611-5023 N1 - Serientitel: Schriftenreihe Stahlbau – Series title: Schriftenreihe Stahlbau IS - 8 SP - 33 EP - 40 AN - OPUS4-31148 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Quercetti, Thomas A1 - Scheidemann, Robert A1 - Komann, Steffen A1 - Ballheimer, Viktor A1 - Wille, Frank T1 - Package testing of a dual purpose cask for SNF from German research reactors N2 - A new dual purpose cask design was developed for the safe transport and interim storage of spent fuel elements of German research reactors. In the framework of the safety assessment within the licensing procedure the Bundesanstalt für Materialforschung und –prüfung (BAM) as competent authority performed a series of drop tests according to the IAEA-Regulations [1]. The package consists of a cylindrical thick-walled ductile cast iron cask body closed by a double lid system with metallic seals. A lid and bottom sided impact limiter consisting of a wood/steel construction limit the mechanical impact loading. The full-scale test specimen was equipped with a basket and assembled with dummy-fuel elements. The package and test specimen, respectively have a total mass of approximately 24 metric tons. The mechanical test program included three 9m free drop tests, in horizontal, vertical and oblique cask orientation onto the lid system. Additionally, a 1m-puncture drop test followed the horizontal drop test to consider an IAEA-test sequence. The horizontal and vertical drop tests were performed at a temperature of minus 40°C. During the oblique drop test the upper impact limiter was heated to +80°C. The tests were conducted onto an unyielding target, fulfilling the requirements of the IAEA regulations [1]. The test specimen was considerably instrumented with strain gauges and accelerometers. Transient strains at selected locations of the inner and outer container walls, of the primary and secondary lid, as well as of the corresponding lid bolts were measured during the drop tests. Furthermore, decelerations in different locations at the cask body and the lids were measured. The complex geometrical deformation of the impact limiters due to the impact were determined by optical 3d- measurements using the projected fringe method in combination with multi-image photogrammetry. Before and after the drop tests the leakage rate of the lid system was determined by helium leakage testing. The experimental results contribute to the evaluation of the package response to mechanical tests, demonstrating safety under normal and accident conditions of transport. Especially to the verification of the dynamic finiteelement model of the package used in the package design safety report [2]. The paper describes the performance of the drop tests, selected test results focusing on the lid screws and the cask body and the deformation of the impact limiters as well as impact kinematics, respectively. T2 - IHLRWM2019 CY - Knoxville, TN, USA DA - 14.04.2019 KW - Drop test KW - Package testing KW - Dual purpose cask PY - 2019 SN - 978-0-89448-761-3 VL - 2019 SP - paper 27283, 1 EP - 7 PB - ANS AN - OPUS4-50619 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Quercetti, Thomas A1 - Scheidemann, Robert A1 - Komann, Steffen A1 - Ballheimer, Viktor A1 - Wille, Frank T1 - Drop Testing of a New Package Design for the Transport of SNF from German Research Reactors N2 - A new dual purpose cask design was developed for the safe transport and interim storage of spent fuel elements of German research reactors. In the framework of the safety assessment within the package approval procedure the Bundesanstalt für Materialforschung und –prüfung (BAM) as competent authority performed a series of drop tests according with the IAEA Transport Regulations. The package consists of a cylindrical thick-walled ductile cast iron cask body closed by a bolted lid system with metallic seals. A lid and bottom sided impact limiter consisting of a wood/steel construction limit the mechanical impact loading. The full-scale test specimen was equipped with a basket and assembled with dummy-fuel elements. The package and test specimen, respectively have a total mass of approximately 24 metric tons. The mechanical drop test program included three 9m free drop tests, in horizontal, vertical and oblique cask orientation onto the lid system. Additionally, a 1m-puncture bar drop test followed the horizontal drop test to consider an IAEA-drop test sequence. The horizontal and vertical drop tests were performed at a temperature of minus 40°C. During the oblique drop test the upper impact limiter was heated up to +80°C. The tests were conducted onto an unyielding target, fulfilling the IAEA requirements. The test specimen was considerably instrumented with strain gauges and accelerometers. Transient strains at selected locations of the inner and outer container walls, of the primary and secondary lid, as well as of the corresponding lid bolts were measured during the drop tests. Furthermore, decelerations in different locations at the cask body and the lids were measured. The complex geometrical deformation of the impact limiters due to the impact were determined by optical 3D- measurements. Before and after the drop tests the leakage rate of the lid system was determined by helium leakage testing. The experimental results contribute to the evaluation of the package response to mechanical tests, demonstrating safety under normal and accident conditions of transport and especially to the verification of the dynamic finite-element model of the package used in the package design safety report. T2 - PATRAM 2019 CY - New Orleans, LA, USA DA - 04.08.2019 KW - SNF KW - Drop testing KW - New package design PY - 2019 SP - Paper 19-A-1142,1 EP - 10 AN - OPUS4-50622 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Komann, Steffen A1 - Wille, Frank A1 - Droste, Bernhard T1 - Transport von Großkomponenten aus der Stilllegung kerntechnischer Anlagen in Deutschland-Erfahrungen bei der mechanischen Intergritätsbewertung N2 - Im Zuge des Rückbaus kerntechnischer Anlagen in Deutschland müssen u. a. Großkomponenten (Dampferzeuger, Reaktordruckbehälter) über öffentliche Verkehrswege in Zwischenlager transportiert werden, in denen sie zerlegt bzw. zwischengelagert werden. Da es sich hierbei um aktivierte und/oder oberflächenkontaminierte Objekte handelt, ist eine Begutachtung unter Berücksichtigung der Gefahrgutbeförderungsvorschriften notwendig. In den meisten Fällen handelt es sich um oberflächenkontaminierte Gegenstände, welche als Industrieversandstücke des Typs IP-2 zu befördern sind. KW - Zwischenlagerung KW - Entsorgung KW - Kerntechnik KW - Radioaktive Stoffe PY - 2016 SN - 0005-6650 VL - Mai 2016 IS - Band 91 SP - 188 EP - 192 PB - Springer VDI Verlag CY - Düsseldorf AN - OPUS4-36852 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -