TY - JOUR A1 - Komann, Steffen A1 - Neumann, Martin A1 - Ballheimer, Viktor A1 - Wille, Frank A1 - Weber, Mike A1 - Qiao, Linan A1 - Droste, Bernhard T1 - Mechanical assessment within type B packages approval: application of static and dynamic calculation approaches JF - Packaging, transport, storage & security of radioactive materials (RAMTRANS) N2 - This paper demonstrates exemplarily how numerical and experimental approaches can be combined reasonably in mechanical assessment of package integrity according to the IAEA regulations. The paper also concentrates on the question about how static mechanical approaches can be applied, and what their problems are in relation to dynamic calculation approaches. Under defined impact tests, which represent accident transport conditions, the package has to withstand impact loading, e.g. resulting from a 9 m free drop onto an unyielding target in sequence with a 1 m puncture drop test. Owing to the local character of the interaction between the puncture bar and the cask body, it is possible to develop a dynamic numerical model for the 1 m puncture drop which allows an appropriate simulation of the interaction area. Results from existing experimental drop tests with prototype or small scale cask models can be used for verification and validation of applied analysis codes and models. The link between analysis and experimental drop testing is described exemplarily by considering a regulatory 1 m puncture bar drop test onto the cask body of a recently approved German high level waste transport package. For the 9 m drop test of the package, it is difficult to develop a dynamic numerical model of the package due to the complexity of the interaction between cask body, impact limiters and unyielding target. Dynamic calculations require an extensive verification with experimental results. The simulation of a 9 m drop of a package with impact limiters is thereby often more complex than the simulation of a 1 m puncture drop onto the cask body. A different approximation method can be applied for the consideration of dynamic effects on the impact loading of the package. In a first step, maximum impact force and rigid body deceleration of the cask body during the impact process can be calculated with simplified numerical tools. This rigid body deceleration can subsequently be applied on a verified static numerical model. Dynamic effects, which cannot be covered by the static numerical analysis, have therefore to be considered by using an additional dynamic factor. The paper describes this approach exemplarily for a 9 m horizontal drop of a typical spent fuel cask design. KW - Package assessment KW - Package KW - Packaging KW - Structural analysis PY - 2011 DO - https://doi.org/10.1179/1746510911Y.0000000012 SN - 1746-5095 SN - 1746-5109 SN - 0957-476X VL - 22 IS - 4 SP - 179 EP - 183 PB - Ramtrans Publ. CY - Ashford AN - OPUS4-26448 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schubert, Sven A1 - Reichardt, Adrian A1 - Müller, Lars A1 - Neumann, Martin A1 - Komann, Steffen A1 - Wille, Frank T1 - Introduction of the German ageing management guide for packages for transport of radioactive materials T2 - Proceedings of the 20th international symposium on the packaging and transportation of radioactive materials N2 - The consideration of ageing mechanisms is with integration of the new para 613A into IAEA SSR-6 (Rev. 1) now obligatory for the design of transport packages. In addition, para 809(f) requires for packages intended to be used for shipment after storage the consideration of the effects of ageing mechanisms during storage in safety analyses and the implementation of corresponding instructions for operation and maintenance. Para 503(e) requires that all packaging components and radioactive contents have been maintained during storage in a manner that all requirements specified in IAEA SSR-6 (Rev.1) and in the applicable certificates of approval have been fulfilled. The evaluation of ageing mechanisms and their effects including monitoring are part of BAM’s authority assessment tasks related to the mechanical and thermal package design and quality assurance aspects. BAM has compiled a guideline for the implementation of ageing assessment and of the measures for ageing management of the approval procedure based on requirements of IAEA SSR-6 (Rev.1). The guideline is applicable only for packages requiring a competent authority approval. The paper aims to describe the structure of the guideline and the general approach for ageing management requirements. The type and amount of measures for ageing management depend mainly on the use of the package and on the ageing effects for the component, which result from relevant ageing mechanisms during package operation time. The implementation of measures for ageing management is divided into three levels – systemic measures, package design related measures and documentation. The systemic measures are attributed to the general management system and define the whole activities for organization of ageing management like structure, responsibilities, documentation, reports and evaluation. The package design related measures are defined in an ageing management plan (AMP). These measures shall ensure that the anticipated changes of the package design under consideration of ageing effects still complies with the design approval specification. Therefore, an ageing surveillance program (ASP) and, if necessary, a gap analysis program shall be developed. The ageing management documentation (AMD) ensures the continuous documentation of the compliance of a specific package to the approved package design, comprising mainly records resulting from operation and surveillance. T2 - PATRAM22 - 20th International Symposium on the Packaging and Transportation of Radioactive Materials CY - Juan-les-Pins, France DA - 11.06.2023 KW - Guide KW - Ageing KW - Mechanism KW - Package KW - Management PY - 2023 SP - 1 EP - 10 PB - World Nuclear Transport Institute (WNTI) CY - London AN - OPUS4-57770 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -