TY - GEN A1 - Gebauer, D. A1 - Beltrán Gutierrez, R. A1 - Marx, S. A1 - Maack, Stefan A1 - Küttenbaum, Stefan A1 - Pirskawetz, Stephan A1 - Breit, W. A1 - Mechtcherine, V. A1 - Grahl, K. A1 - Thiel, T. A1 - Schickert, M. A1 - Krüger, M. T1 - Interrelated Data Set from Nondestructive and Destructive Material Testing of Concrete Compressive Strength Specimens N2 - "This data set contains three different data types obtained from concrete specimens. For each specimen, the rebound numbers, ultrasonic data (ultrasonic velocity, time of flight), and destructive concrete strength are given. Two kind of specimen geometries were tested: cubes and drilled cores. The files are labeled according to the specimen geometry as "cube" or "core" and the type of measurement data as "compressive_strength", "rn_R" and "rn_Q" for rebound numbers as well as "us" for ultrasonic data. The ultrasonic data were generated by six independent laboratories, the rebound numbers by five independent laboratories and the destructive tests by one laboratory. The designation of each specimen establishes the relationship between the different data types." KW - Compressive Concrete Strength KW - Rebound Hammer KW - Ultrasonic Pulse Velocity PY - 2023 DO - https://doi.org/10.7910/DVN/AFCITK PB - Harvard College CY - Cambridge, MA, USA AN - OPUS4-57223 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Gebauer, D. A1 - Gutierrez, B. A1 - Marx, S. A1 - Maack, Stefan A1 - Küttenbaum, Stefan A1 - Pirskawetz, Stephan A1 - Breit, W. A1 - Mechtcherine, V. A1 - Grahl, K. A1 - Thiel, T. A1 - Schickert, M. A1 - Krüger, M. T1 - Interrelated data set from nondestructive and destructive material testing of concrete compressive strength specimens N2 - This data set contains three different data types obtained from concrete specimens. For each specimen, the rebound numbers, ultrasonic data (ultrasonic velocity, time of flight), and destructive concrete strength are given. Two kind of specimen geometries were tested: cubes and drilled cores. The files are labeled according to the specimen geometry as "cube" or "core" and the type of measurement data as "compressive_strength", "rn_R" and "rn_Q" for rebound numbers as well as "us" for ultrasonic data. The ultrasonic data were generated by six independent laboratories, the rebound numbers by five independent laboratories and the destructive tests by one laboratory. The designation of each specimen establishes the relationship between the different data types. KW - Non-destructive testing KW - Rebound number KW - Ultrasonic pulse velocity KW - Compressive concrete strength KW - Interlaboratory comparison PY - 2023 DO - https://doi.org/10.7910/DVN/AFCITK PB - Harvard College CY - Cambridge, MA, USA AN - OPUS4-57499 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Bartolac, M. A1 - Bien, J. A1 - Górski, M. A1 - Keßler, S. A1 - Küttenbaum, Stefan A1 - Kuzawa, M. A1 - Ley, J. A1 - Maack, Stefan A1 - Mendler, A. A1 - Ryjáček, P. A1 - Santos, L. A1 - Verstrynge, E. ED - Keßler, S. ED - Limongelli, M. P. ED - Apostolidi, E. T1 - Chapter 2: Condition survey - Testing and monitoring methods N2 - The through-life management of our constantly ageing infrastructure is a basic requirement in order to ensure their structural safety and serviceability. Each structure experiences deterioration processes with time leading to a decrease of structural safety and serviceability. The design of new structures considers the expected deterioration for a defined period, the design service life. However, a frequent survey of structural safety controlling structural condition should be mandatory and a maintenance plan should be an integral part of the design. In addition, many structures have exceeded their design service life already or are very close to it leading to an increasing demand for condition assessment. On the one hand, assumptions made during design are not valid any more due to change of the loads, e.g., increasing traffic loads in terms of number and weights. On the other hand, design codes evolved over time in such a way that existing structures do not comply with today’s standards. In all these cases, the through-life management is an important tool to maintain the accessibility of existing structures with known reliability. In line with the new Model Code for Concrete Structures, which includes guidance for both – design of new structures and assessment of existing structures, the Task Group 3.3 focused on the compilation of a state-of-the-art guideline for the through-life management of existing concrete structures, including: Data acquisition by testing and monitoring techniques; Condition assessment for the evaluation of existing structures; Performance prediction using advanced methods; Decision-making procedures to perform a complete assessment of existing structure. The overall objective of the through-life management is the assessment of the current condition and the estimation of the remaining service life under consideration of all boundary conditions. KW - Life management KW - Concrete KW - Non-destructive testing KW - Structural health monitoring KW - State-of-the-art PY - 2023 UR - https://doi.org/10.35789/fib.BULL.0109 SN - 978-2-88394-172-4 DO - https://doi.org/10.35789/fib.BULL.0109.Ch02 SN - 1562-3610 VL - fib Bulletin 109 SP - 16 EP - 38 PB - Fédération internationale du béton (fib) CY - Lausanne AN - OPUS4-59110 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Jansen, D. A1 - Bald, S. A1 - Birbaum, J. A1 - Küttenbaum, Stefan A1 - Krause, J. A1 - Maack, Stefan A1 - Pichottka, S. A1 - Scherkenbach, M. A1 - Strangfeld, Christoph A1 - Villaret, K. A1 - Wöllenstein, J. T1 - Sensors for the structural assessment of roads N2 - This working paper summarises the current state of knowledge and research on the application of sensors in road pavements, designed to record input quantities and characteristics for structural assessment. In this working paper, sensors generally refer to technical equipment that can used to record the values of physical quantities and display them for interpretation. The working paper deals with every type of sensor that is permanently connected to the road, i.e. sensors that are installed – in the bound and unbound courses of the superstructure as well as in the sub-base/sub-structure, – next to or above the road (for example on masts) and can contribute to structural recording and its subsequent assessment. This can also include sensors that are primarily used for a different purpose (e.g. traffic control). However, this working paper only describes the application of sensors that are installed primarily for other purposes for the sake of completeness; special publications (e.g. Notes on detection technologies in road traffic) are available for the respective installation situations. KW - Asphalt KW - Concrete KW - Measurement chain KW - Sensor technology KW - Condition assessment PY - 2024 SP - 1 EP - 36 PB - Forschungsgemeinschaft für Straßen- und Verkehrswesen e.V. CY - Köln AN - OPUS4-60084 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Küttenbaum, Stefan A1 - Maack, Stefan A1 - Taffe, A. T1 - Structural safety referring to ultrasound on concrete bridges N2 - Measuring means knowing. The structural engineer’s Knowledge about structures is vitally important for the assessment of their structural safety. This contribution shows, how non-destructive testing methods can be used to collect valuable Information about existing structures. This value is expressed in this paper by the usability in probabilistic assessments and thus by the reliability of the information. The development of non-destructive testing methods in civil-engineering allows the realistic measurement and visualization of inner constructions of concrete components with a minimum of destructive interventions. The evaluation of the quality of measurement data is of fundamental importance for quantitative measurements in order to ensure the objectivity of testing and evaluation and to assess the reliability of the knowledge acquired. Both systematic and random deviations must be identified, quantified and taken into account to obtain statistically sound data. The Focus of this contribution is on the methodical path, how displayed measurement data can be processed into reliable knowledge. It is not about developing assessment methods but about providing necessary knowledge to increase their operational usability. T2 - 16th International Probabilistic Workshop CY - Vienna, Austria DA - 12.09.2018 KW - NDT KW - Reassessment KW - Probabilistic KW - Non-destructive testing in civil engineering PY - 2018 DO - https://doi.org/10.1002/best.201800034 SN - 1437-1006 VL - 113 IS - S2 SP - 7 EP - 13 PB - Ernst & Sohn Verlag für Architektur und technische Wissenschaften GmbH & Co. KG CY - Berlin AN - OPUS4-46143 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Küttenbaum, Stefan A1 - Braml, T. A1 - Taffe, A. A1 - Maack, Stefan ED - Pellegrino, C. ED - Faleschini, F. ED - Zanini, M.A. ED - Matos, J.C. ED - Casas, J.R. ED - Strauss, A. T1 - From Uncertainty in Measurement to Certainty in Bridge Reassessment N2 - "The reassessment of bridges continues to take great importance both nationally and internationally. A major challenge is to find computation models reflecting the actual properties of the considered structures sufficiently accurate. Besides regular inspections, the conduction of advanced measurements is suitable to generate reliable information about a structure to be assessed. Prior to incorporating measurement results in reassessment, the relevance, the trueness, and the precision of the measured information needs to be stated. On the one hand, the use of information whose quality has not been assessed can lead to errors with serious consequences. On the other, the measurement of irrelevant information is inefficient. Although the use of measured data in assessment is currently mostly unregulated, their appreciation in reliability analyses is beneficial since the built environment can be assessed more realistically. Utilizing NDT in reassessment has the potential to extend remaining lifetimes of a structure, save resources, and improve infrastructural availabilities. The power of judgment regarding the decision on the reliability of an existing structure can be increased. In this contribution, an approach is outlined to process non-destructively gathered measurement data in a comparableway in order to include themeasured information in probabilistic reliability assessments of existing structures. An essential part is the calculation of measurement uncertainties. The effect of incorporating evaluated NDT-results is demonstrated by means of a prestressed concrete bridge and GPR measurements conducted on this bridge as a case-study. The bridge is assessed regarding SLS Decompression using the NDT-results." KW - Reliability KW - Assessment KW - Existing structures KW - NDT KW - Concrete PY - 2022 DO - https://doi.org/10.1007/978-3-030-91877-4_58 VL - 200 SP - 509 EP - 517 PB - Springer CY - Cham AN - OPUS4-54019 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Maack, Stefan A1 - Küttenbaum, Stefan A1 - Bühling, Benjamin T1 - Low-frequency ultrasound data (pulse-echo technique) with shear horizontal and longitudinal waves on the step-shaped concrete specimen “Pk266” with tendons N2 - This dataset contains raw data acquired in ultrasound measurements on a reference specimen made of concrete at Bundesanstalt für Materialforschung und -prüfung (BAM), Berlin (Germany). The internal specimen identifier is “Pk266”. The measurements were conducted using the pulse-echo method. The upper surface of the specimen was defined as measuring area. The aim of the measurements is to determine both the geometrical dimensions (thickness) and the position of tendons to the measuring area. In addition to this, a second dataset of a second specimen with identifier is existing named “Pk050” has been acquired. Pk050 has the same geometrical dimensions and concrete recipe as Pk266 recipe but does not contain tendons [Reference: https://doi.org/10.7910/DVN/9EID5D]. KW - Ultrasound KW - Pulse echo method KW - Synthetic Aperture Focusing Technique KW - Validation KW - Elastic wave PY - 2023 DO - https://doi.org/10.7910/DVN/NUU0WZ PB - Harvard College CY - Cambridge, MA, USA AN - OPUS4-57232 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Maack, Stefan A1 - Küttenbaum, Stefan A1 - Bühling, Benjamin A1 - Niederleithinger, Ernst T1 - Low frequency ultrasonic dataset for pulse echo object detection in an isotropic homogeneous medium as reference for heterogeneous materials in civil engineering N2 - The dataset presented contains ultrasonic data recorded in pulse echo mode. The investigated specimen is made of the isotropic homogeneous material polyamide and has a drill hole of constant diameter running parallel to the surface, which was scanned in a point grid using an automatic scanner system. At each measuring position, a pitch-catch measurement was performed using a sampling rate of 2 MHz. The probes used are arrays consisting of a spatially separated receiving and in-phase transmitting unit. The transmitting and receiving sides each consist of 12 point-shaped single probes. These dry-point contact (DPC) probes operate according to the piezoelectric principle at nominal frequencies of 55 kHz (shear waves) and 100 kHz (longitudinal waves), respectively, and do not require a coupling medium. The measurements are performed with longitudinal (100 kHz) and transverse (55 kHz) waves with different geometric orientations of the probe on the measurement surface. The data presented in the article provide a valid source for evaluating reconstruction algorithms for imaging in the low-frequency ultrasound range. KW - Non-destructive testing KW - Ultrasound KW - Pulse-echo method KW - Reference material KW - Reconstruction algorithm KW - Validation PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-547326 DO - https://doi.org/10.1016/j.dib.2022.108235 VL - 42 SP - 1 EP - 11 PB - Elsevier Inc. AN - OPUS4-54732 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maack, Stefan A1 - Küttenbaum, Stefan A1 - Niederleithinger, Ernst T1 - Practical procedure for the precise measurement of geometrical tendon positions in concrete with ultrasonic echo N2 - Existing concrete structures were usually designed for lifetimes of several decades. The current and urgently required efforts to increase sustainability and protect the environment will likely result in extended service lives up to 100 years. To achieve such objectives, it is required to assess structures over their entire lifecycles. Non-destructive testing (NDT) methods can reliably support the assessment of existing structures during the construction, operational, and decommissioning phases. One of the most important and safety-relevant components of a prestressed concrete structure are the tendons. NDT methods such as the ultrasonic echo method are suitable for both the detection and the localization of the tendons, i.e., the measurement of their geometrical position inside the component. The uniqueness of structures, concrete heterogeneity, and varying amounts of secondary components such as the reinforcement represent obstacles in the application of these methods in practice. The aim of this contribution is to demonstrate a practicable procedure, that can be used in the field to determine the parameters required for the measuring data analysis without extensive knowledge about the investigated components. For this purpose, a polyamide reference specimen is used to show which steps are required to obtain reliable imaging information on the position of tendons from the measurement data. The procedure is then demonstrated on a concrete test specimen that covers various relevant and practice-oriented test scenarios, such as varying tendon depths and component thicknesses. T2 - International Conference on Concrete Repair, Rehabilitation and Retrofitting (ICCRRR 2022) CY - Cape Town, South Africa DA - 03.10.2022 KW - Validation KW - Non-destructive testing KW - Ultrasonic KW - Reconstruction KW - Concrete KW - Tendon duct PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-559979 DO - https://doi.org/10.1051/matecconf/202236403007 SN - 2261-263X SP - 1 EP - 8 AN - OPUS4-55997 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Maack, Stefan A1 - Küttenbaum, Stefan A1 - Bühling, Benjamin A1 - Borchardt-Giers, Kerstin A1 - Aßmann, Norman A1 - Niederleithinger, Ernst T1 - Low frequency ultrasonic pulse-echo datasets for object detection and thickness measurement in concrete specimens as testing tasks in civil engineering N2 - The dataset contains raw data gathered with the ultrasonic pulse-echo method on concrete specimens. The surfaces of the measuring objects were automatically scanned point by point. Pulse-echo measurements were performed at each of these measuring points. The test specimens represent two typical testing tasks in construction industry: the detection of objects and the determination of dimensions to describe the geometry of components. By automating the measurement process, the different test scenarios are examined with a high repeatability, precision and measuring point density. Longitu- dinal and transversal waves were used and the geometrical aperture of the testing system was varied. The low-frequency probes operate in a range of up to approximately 150 kHz. In addition to the specification of the geometrical dimensions of the individual probes, the directivity pattern and the sound field characteristics are provided. The raw data are stored in a universally readable format. The length of each time signal (A-scan) is two milliseconds and the sampling rate is two mega-samples per second. The provided data can be used for comparative studies in signal analysis, imag- ing and interpretation as well as for evaluation pur- poses in different, practically relevant testing scenarios. KW - Validation KW - Puls-echo method KW - Ultrasonic KW - Non-destructive testing KW - SAFT KW - Reconstruction algorithm PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-575185 DO - https://doi.org/10.1016/j.dib.2023.109233 SN - 2352-3409 VL - 48 SP - 1 EP - 16 PB - Elsevier Inc. AN - OPUS4-57518 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -