TY - CONF A1 - Maack, Stefan A1 - Niederleithinger, Ernst A1 - Epple, Niklas A1 - Liao, Chun-Man T1 - Recent advances in (ultra)sonic active and passive monitoring of reinforced and prestressed concrete structures N2 - In addition to already established structural monitoring methods such as deformation, inclination or strain gauges or acoustic emission sensors, sonic or ultrasonic monitoring might provide valuable information about the condition or alteration of a structure. Sensors such as geophones, recording ambient noise in the sonic and subsonic frequency range can provide information beyond modal analysis by using interferometric methods. Wave velocities determined by this method are related to the elastic properties and stiffness of material and structure and can be converted into damage indicators. Embedded active ultrasonic transducer networks can provide more detailed insight about deterioration or damages again, using interferometric technologies. This approach is extremely sensible, detecting relative change in velocity on down to 10-5. These methods, including benefits and remaining challenges, are demonstrated using data from a test structure at BAM’s test site demonstrating the case of prestress loss, and data from an actual bridge still under traffic. T2 - International Conference on Concrete Repair, Rehabilitation and Retrofitting (ICCRRR 2022) CY - Cape Town, South Africa DA - 03.10.2022 KW - Monitoring KW - Ultrasonic KW - Non-destructive testing KW - Coda wave KW - Bridge PY - 2022 AN - OPUS4-56000 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maack, Stefan A1 - Küttenbaum, Stefan A1 - Niederleithinger, Ernst T1 - Practical procedure for the precise measurement of geometrical tendon positions in concrete with ultrasonic echo N2 - Existing concrete structures were usually designed for lifetimes of several decades. The current and urgently required efforts to increase sustainability and protect the environment will likely result in extended service lives up to 100 years. To achieve such objectives, it is required to assess structures over their entire lifecycles. Non-destructive testing (NDT) methods can reliably support the assessment of existing structures during the construction, operational, and decommissioning phases. One of the most important and safety-relevant components of a prestressed concrete structure are the tendons. NDT methods such as the ultrasonic echo method are suitable for both the detection and the localization of the tendons, i.e., the measurement of their geometrical position inside the component. The uniqueness of structures, concrete heterogeneity, and varying amounts of secondary components such as the reinforcement represent obstacles in the application of these methods in practice. The aim of this contribution is to demonstrate a practicable procedure, that can be used in the field to determine the parameters required for the measuring data analysis without extensive knowledge about the investigated components. For this purpose, a polyamide reference specimen is used to show which steps are required to obtain reliable imaging information on the position of tendons from the measurement data. The procedure is then demonstrated on a concrete test specimen that covers various relevant and practice-oriented test scenarios, such as varying tendon depths and component thicknesses. T2 - International Conference on Concrete Repair, Rehabilitation and Retrofitting (ICCRRR 2022) CY - Cape Town, South Africa DA - 03.10.2022 KW - Validation KW - Non-destructive testing KW - Ultrasonic KW - Reconstruction KW - Concrete KW - Tendon duct PY - 2022 AN - OPUS4-55999 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Strangfeld, Christoph A1 - Bühling, Benjamin A1 - Maack, Stefan T1 - OsciCheck - A novel fluidic transducer for air coupled ultrasonic measurements N2 - Ultrasonic measurement technology has become indispensable in NDT-CE. Air-coupled ultrasonic (ACU) measurement techniques promise to reduce measurement time. However, the signal quality suffers from large specific impedance mismatch at the transducer-air and air-specimen interface. Additionally, large pressure amplitudes are necessary for the penetration depth required in NDT-CE applications. To address the specific requirements of ultrasonic testing in NDT-CE, a robust ACU transducer was developed, that generates ultrasound by quickly switching a pressurized air flow. The simple design of the fluidic transducer makes the device maintenance free and resilient against harsh environmental conditions. Since the signal is generated by aeroacoustics, there is no specific impedance mismatch between the transducer and the surrounding air. The ultrasonic signal exhibits frequencies in the 30-60 kHz range and is therefore well suited to penetrate heterogenous materials such as concrete. This contribution gives an introduction in the working principle and signal characteristics of the fluidic transducer. A detailed outlook is given to discuss the future potential of fluidic ultrasonic actuators. T2 - International Symposium Non-Destructive Testing in Civil Engineering CY - Zurich, Switzerland DA - 16.08.2022 KW - Air-coupled ultrasound KW - Nondestructive testing KW - Fluidics KW - Bistable amplifier KW - Aeroacoustics PY - 2022 AN - OPUS4-55529 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -