TY - JOUR A1 - Swaminathan, Srinivasan A1 - Sun, K. A1 - Was, G. S. T1 - Decoupling the roles of grain boundary oxidation and stress in IASCC of neutron-irradiated 304L stainless steel N2 - Irradiation assisted stress corrosion cracking (IASCC) is known to be a combination of applied stress, and a corrosive environment in irradiated materials, but an appropriate understanding of how each of these components affects cracking is not yet clear. In this work, we isolate the role of grain boundary (GB) oxidation in IASCC. For this purpose, solution-annealed 304L stainless steel irradiated in reactor to 5.4 or 69 dpa was studied using a miniaturized four-point bend technique. Two modes of bend tests were conducted; straining in simulated pressurized water reactor primary water (PW) at 320 ◦C in an incremental manner, and pre-oxidation in PW at 320 ◦C without application of stress followed by dynamic straining in purified Ar at the same temperature until crack initiation. Exposure of the 5.4 dpa sample for 210 h in high temperature water initiated cracks in Ar at 60% of the yield stress (0.6YS), whereas the companion sample of the same dose exposed for 1010 h cracked in Ar at 0.5YS. The long-term exposure in water led to GB oxidation that ultimately lowered the crack initiation stress. Dynamic straining in water resulted in larger crack lengths and greater crack depths indicating stress accelerated oxidation and cracking. Dislocation pile-ups at dislocation channel-grain boundary sites provide an amplification of the applied stress to a level consistent with the fracture stress of the grain boundary oxide, providing an explanation for IASCC that occurs at applied stresses well below the irradiated yield stress of the alloy. There was no evidence of cracking upon straining of an unoxidized 69 dpa sample in Ar to well above yield, confirming that the irradiated state is not inherently susceptible to intergranular (IG) cracking and that oxidized GBs are responsible for initiation of IG cracking. KW - Stress corrosion cracking KW - Grain boundary oxidation KW - Stainless steel KW - Crack initiation KW - IASCC PY - 2023 DO - https://doi.org/10.1016/j.jnucmat.2023.154604 SN - 0022-3115 VL - 585 SP - 1 EP - 15 PB - Elsevier B.V. AN - OPUS4-58233 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kumar, Sumit A1 - Swaminathan, Srinivasan A1 - Hesse, Rene A1 - Goldbeck, Hennig A1 - Ding, Wenjin A1 - Bonk, Alexander A1 - Bauer, Thomas T1 - Understanding the effect of oxide ions on Solar Salt chemistry and corrosion mechanism of 316L stainless steel at 600 °C N2 - Solar Salt (60 wt% NaNO3, 40 wt% KNO3), used in Concentrated Solar Power (CSP) Thermal Energy Storage (TES) technology, can decompose into various products at elevated temperatures, with oxide ions being one of the known corrosive byproducts. The study mimics Solar Salt aging by intentionally adding sodium peroxide (Na2O2) and sodium oxide (Na2O) at concentrations of 0.005–0.33 wt% to investigate their role in the corrosion of austenitic stainless steel at 600 °C in typical operating conditions. Salt chemistry (nitrite, nitrate, oxide ions, and metal cations) was analyzed every 24 h, and steel corrosion after 168 h was assessed by weight change, corrosion rate, phase analysis, and cross-sectional morphology. Results reveal that at or above 0.135 wt% added Na2O2/Na2O leads to a quasi-steady-state equilibrium of oxide ions in the salt. Interestingly, at these concentrations, the presence of steel further decreases oxide ion concentration. Furthermore, above 0.135 wt%, the corrosion rate increases significantly, along with increased spallation, porosity and disintegration of the corrosion layer, forming a non-protective layer. This study highlights the critical role of oxide ions in the corrosion process. KW - Solar Salt KW - High temperature corrosion KW - Thermal Energy Storage KW - Alkali oxides KW - Austenitic stainless steel PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-628463 DO - https://doi.org/10.1016/j.corsci.2025.112849 SN - 1879-0496 VL - 249 SP - 1 EP - 17 PB - Elsevier Ltd. AN - OPUS4-62846 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Swaminathan, Srinivasan A1 - Kumar, S. A1 - Kranzmann, Axel A1 - Hesse, Rene A1 - Goldbeck, Hennig A1 - Fantin, Andrea T1 - Corrosion characteristics of 316L stainless steel in oxide-rich molten solar salt at 600◦C N2 - An attempt has been made in this work, to observe the influence on alloy aging by the sodium oxide (Na2O) in solar salt (60 wt% NaNO3 + 40 wt% KNO3). The accelerated aging was established by adding Na2O (0.005, 0.07, 0.135 and 0.2 wt%) to the solar salt and their effect on corrosion of 316L stainless steel (SS) at 600 ◦C in that oxide-rich solar salts for 168 h in synthetic air was investigated. Corrosion is significantly more in oxide-rich solar salt compared to pure solar salt. Strikingly, the oxide scale-base metal interface is wavy in solar salt containing 0.005 % Na2O clearly shows the oxide addition to salt melt influences Cr-rich inner oxide layer formation and its selective dissolution at early stage that leads to non-uniform corrosion. Interestingly, with increase of Na2O to 0.07 %, steel corrosion proceeded uniformly by accelerated disintegration of Cr-rich inner layer and subsequent dissolution. Severe scale spallation and weight loss in nitrate melt containing 0.2 % Na2O fostering more rapid corrosion, alarming that substantial tolerance of oxide content in solar salt is ≥ 0.135 % for an acceptable corrosion of 316L SS. Despite preferential dissolution of Cr and scale degradation/spallation with increased oxide content in solar salt, the corrosion layer in all cases comprised of sodium ferrite, and Cr-rich Cr-Fe mixed oxides with the Ni enrichment at the scale-metal interface. Competing processes between oxide scale growth, degradation and dissolution or even spallation has been discussed with an emphasis of Na2O addition to solar salt. KW - Molten salt corrosion KW - Solar salt KW - Thermal energy storage KW - Stainless steel KW - Concentrating solar power PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-610819 DO - https://doi.org/10.1016/j.solmat.2024.113176 VL - 278 SP - 1 EP - 13 PB - Elsevier B.V. AN - OPUS4-61081 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Was, G.S. A1 - Bahn, C.-B. A1 - Busby, J. A1 - Cui, B. A1 - Farkas, D. A1 - Gussev, M. A1 - Rigen He, M. A1 - Hesterberg, J. A1 - Jiao, Z. A1 - Johnson, D. A1 - Kuang, W. A1 - McMurtrey, M. A1 - Robertson, I. A1 - Sinjlawi, A. A1 - Song, M. A1 - Stephenson, K. A1 - Sun, K. A1 - Swaminathan, Srinivasan A1 - Wang, M. A1 - West, E. T1 - How irradiation promotes intergranular stress corrosion crack initiation N2 - Irradiation assisted stress corrosion cracking (IASCC) is a form of intergranular stress corrosion cracking that occurs in irradiated austenitic alloys. It requires an irradiated microstructure along with high temperature water and stress. The process is ubiquitous in that it occurs in a wide range of austenitic alloys and water chemistries, but only when the alloy is irradiated. Despite evidence of this degradation mode that dates back to the 1960s, the mechanism by which it occurs has remained elusive. Here, using high resolution electron backscattering detection to analyze local stress-strain states, high resolution transmission electron microscopy to identify grain boundary phases at crack tips, and decoupling the roles of stress and grain boundary oxidation, we are able to unfold the complexities of the phenomenon to reveal the mechanism by which IASCC occurs. The significance of the findings impacts the mechanical integrity of core components of both current and advanced nuclear reactor designs worldwide. KW - Irradiation KW - Stress corrosion cracking KW - Grain boundaries KW - Oxidation KW - Austenitic alloys PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-595748 DO - https://doi.org/10.1016/j.pmatsci.2024.101255 SN - 0079-6425 VL - 143 SP - 1 EP - 15 PB - Elsevier AN - OPUS4-59574 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -