TY - CONF A1 - Mueller, I. A1 - Freitag, S. A1 - Memmolo, V. A1 - Moix-Bonet, M. A1 - Möllenhoff, K. A1 - Golub, M. A1 - Sridaran Venkat, R. A1 - Lugovtsova, Yevgeniya A1 - Eremin, A. A1 - Moll, J. A1 - Tschöke, K. ED - Rizzo, P. ED - Milazzo, A. T1 - Performance Assessment for Artificial Intelligence-Based Data Analysis in Ultrasonic Guided Wave-Based Inspection: A Comparison to Classic Path-Based Probability of Detection T2 - Lecture Notes in Civil Engineering - EWSHM 2022 N2 - Performance assessment for GuidedWave (GW)-based Structural Health Monitoring (SHM) systems is of major importance for industrial deployment. With conventional feature extraction methods like damage indices, pathbased probability of detection (POD) analysis can be realized. To achieve reliability quantification enough data needs to be available, which is rarely the case. Alternatives like methods for performance assessment on system level are still in development and in a discussion phase. In this contribution, POD results using an Artificial Intelligence (AI)-based data analysis are compared with those delivered by conventional data analysis. Using an open-access dataset from Open Guided Wave platform, the possibility of performance assessment for GW-based SHM systems using AI-based data analysis is shown in detail. An artificial neural network (ANN) classifier is trained to detect artificial damage in a stiffened CFRP plate. As input for the ANN, classical damage indicators are used. The ANN is tested to detect damage at another position, whose inspection data were not previously used in training. The findings show very high detection capabilities without sorting any specific path but only having a global view of current damage metrics. The systematic evaluation of the ANN predictions with respect to specific damage sizes allows to compute a probability of correct identification versus flaw dimension, somehow equivalent to and compared with the results achieved through classic path-based POD analysis. Also, sensitive paths are detected by ANN predictions allowing for evaluation of maximal distances between path and damage position. Finally, it is shown that the prediction performance of the ANN can be improved significantly by combining different damage indicators as inputs. T2 - 10th European Workshop on Structural Health Monitoring (EWSHM 2022) CY - Palermo, Italy DA - 04.07.2022 KW - Probability of Detection KW - Composites KW - Open Guided Waves Platform KW - Artificial Neural Network PY - 2022 SN - 978-3-031-07257-4 DO - https://doi.org/10.1007/978-3-031-07258-1 SN - 2366-2557 VL - 2 SP - 953 EP - 961 PB - Springer CY - Cham, Switzerland AN - OPUS4-55269 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Tschöke, K. A1 - Mueller, I. A1 - Memmolo, V. A1 - Sridaran Venkat, R. A1 - Golub, M. A1 - Eremin, A. A1 - Moix-Bonet, M. A1 - Möllenhoff, K. A1 - Lugovtsova, Yevgeniya A1 - Moll, J. A1 - Freitag, S. ED - Rizzo, P. ED - Milazzo, A. T1 - A Model-Assisted Case Study Using Data from Open Guided Waves to Evaluate the Performance of Guided Wave-Based Structural Health Monitoring Systems T2 - Lecture Notes in Civil Engineering - EWSHM 2022 N2 - Reliability assessment of Structural Health Monitoring (SHM) systems poses new challenges pushing the research community to address many questions which are still open. For guided wave-based SHM it is not possible to evaluate the system performance without taking into account the target structure and applied system parameters. This range of variables would result in countless measurements. Factors like environmental conditions, structural dependencies and wave characteristics demand novel solutions for performance analysis of SHM systems compared to those relying on classical non-destructive evaluation. Such novel approaches typically require model-assisted investigations which may not only help to explain and understand performance assessment results but also enable complete studies without costly experiments. Within this contribution, a multi input multi output approach using a sparse transducer array permanently installed on a composite structure to excite and sense guided waves is considered. Firstly, the method and the analysis of path-based performance assessment are presented considering an open-access dataset from the Open Guided Wave platform. Then, a performance analysis of a guided wave-based SHM system using Probability of Detection is presented. To explain some unexpected results, the model-assisted investigations are used to understand the physical phenomena of wave propagation in the test specimen including the interaction with damage. Finally, issues and future steps in SHM systems’ performance assessment and their development are discussed. T2 - 10th European Workshop on Structural Health Monitoring (EWSHM 2022) CY - Palermo, Italy DA - 04.07.2022 KW - Performance assessment KW - Ultrasonic Guided Waves KW - Open Guided Waves Platform PY - 2022 SN - 978-3-031-07257-4 DO - https://doi.org/10.1007/978-3-031-07258-1 SN - 2366-2557 VL - 2 SP - 938 EP - 944 PB - Springer CY - Cham, Switzerland AN - OPUS4-55270 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tschöke, K. A1 - Müller, I. A1 - Memmolo, V. A1 - Moix-Bonet, M. A1 - Moll, J. A1 - Lugovtsova, Yevgeniya A1 - Golub, M. A1 - Sridaran Venkat, R. A1 - Schubert, L. T1 - Feasibility of Model-Assisted Probability of Detection Principles for Structural Health Monitoring Systems based on Guided Waves for Fibre-Reinforced Composites JF - IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control N2 - In many industrial sectors, Structural Health Monitoring (SHM) is considered as an addition to Non-Destructive Testing (NDT) that can reduce maintenance effort during lifetime of a technical facility, structural component or vehicle. A large number of SHM methods is based on ultrasonic waves, whose properties change depending on structural health. However, the wide application of SHM systems is limited due to the lack of suitable methods to assess their reliability. The evaluation of the system performance usually refers to the determination of the Probability of Detection (POD) of a test procedure. Up to now, only few limited methods exist to evaluate the POD of SHM systems, which prevent them from being standardised and widely accepted in industry. The biggest hurdle concerning the POD calculation is the large amount of samples needed. A POD analysis requires data from numerous identical structures with integrated SHM systems. Each structure is then damaged at different locations and with various degrees of severity. All of this is connected to high costs. Therefore, one possible way to tackle this problem is to perform computer-aided investigations. In this work, the POD assessment procedure established in NDT according to the Berens model is adapted to guided wave-based SHM systems. The approach implemented here is based on solely computer-aided investigations. After efficient modelling of wave propagation phenomena across an automotive component made of a carbon fibre-reinforced composite, the POD curves are extracted. Finally, the novel concept of a POD map is introduced to look into the effect of damage position on system reliability. KW - Reliability KW - Acoustics KW - Monitoring KW - Automotive engineering KW - Elastodynamic Finite Inegration Technique PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-528218 DO - https://doi.org/10.1109/TUFFC.2021.3084898 VL - 68 IS - 10 SP - 3156 EP - 3173 AN - OPUS4-52821 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mueller, I. A1 - Memmolo, V. A1 - Tschöke, K. A1 - Moix-Bonet, M. A1 - Möllenhoff, K. A1 - Golub, M. A1 - Sridaran Venkat, R. A1 - Lugovtsova, Yevgeniya A1 - Eremin, A. A1 - Moll, J. T1 - Performance Assessment for a Guided Wave-Based SHM System Applied to a Stiffened Composite Structure JF - Sensors N2 - To assess the ability of structural health monitoring (SHM) systems, a variety of prerequisites and contributing factors have to be taken into account. Within this publication, this variety is analyzed for actively introduced guided wave-based SHM systems. For these systems, it is not possible to analyze their performance without taking into account their structure and their applied system parameters. Therefore, interdependencies of performance assessment are displayed in an SHM pyramid based on the structure and its monitoring requirements. Factors influencing the quality, capability and reliability of the monitoring system are given and put into relation with state-of-the-art performance analysis in a non-destructive evaluation. While some aspects are similar and can be treated in similar ways, others, such as location, environmental condition and structural dependency, demand novel solutions. Using an open-access data set from the Open Guided Waves platform, a detailed method description and analysis of path-based performance assessment is presented.The adopted approach clearly begs the question about the decision framework, as the threshold affects the reliability of the system. In addition, the findings show the effect of the propagation path according to the damage position. Indeed, the distance of damage directly affects the system performance. Otherwise, the propagation direction does not alter the potentiality of the detection approach despite the anisotropy of composites. Nonetheless, the finite waveguide makes it necessary to look at the whole paths, as singular phenomena associated with the reflections may appear. Numerical investigation helps to clarify the centrality of wave mechanics and the necessity to take sensor position into account as an influencing factor. Starting from the findings achieved, all the issues are discussed, and potential future steps are outlined. KW - Reliability assessment KW - Ultrasonic Guided Waves KW - Structural Health Monitoring KW - Probability of detection KW - Path-based analysis PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-558853 DO - https://doi.org/10.3390/s22197529 VL - 22 IS - 19 SP - 1 EP - 28 PB - MDPI CY - Basel, Switzerland AN - OPUS4-55885 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -