TY - JOUR A1 - Reed, B. P. A1 - Cant, D.J.H. A1 - Spencer, J. A1 - Carmona-Carmona, A. J. A1 - Bushell, A. A1 - Herrara-Gómez, A. A1 - Kurokawa, A. A1 - Thissen, A. A1 - Thomas, A.G. A1 - Britton, A.J. A1 - Bernasik, A. A1 - Fuchs, A. A1 - Baddorf, A. P. A1 - Bock, B. A1 - Thellacker, B. A1 - Cheng, B. A1 - Castner, D.G. A1 - Morgan, D.J. A1 - Valley, D. A1 - Willneff, E.A. A1 - Smith, E.F. A1 - Nolot, E. A1 - Xie, F. A1 - Zorn, G. A1 - Smith, G.C. A1 - Yasukufu, H. A1 - Fenton, J. L. A1 - Chen, J. A1 - Counsell, J..D.P. A1 - Radnik, Jörg A1 - Gaskell, K.J. A1 - Artyushkova, K. A1 - Yang, L. A1 - Zhang, L. A1 - Eguchi, M. A1 - Walker, M. A1 - Hajdyla, M. A1 - Marzec, M.M. A1 - Linford, M.R. A1 - Kubota, N. A1 - Cartazar-Martínez, O. A1 - Dietrich, P. A1 - Satoh, R. A1 - Schroeder, S.L.M. A1 - Avval, T.G. A1 - Nagatomi, T. A1 - Fernandez, V. A1 - Lake, W. A1 - Azuma, Y. A1 - Yoshikawa, Y. A1 - Shard, A.G. T1 - Versailles Project on Advanced Materials and Standards interlaboratory study on intensity calibration for x-ray photoelectron spectroscopy instruments using low-density polyethylene N2 - We report the results of a Versailles Project on Advanced Materials and Standards interlaboratory study on the intensity scale calibration of x-ray photoelectron spectrometers using low-density polyethylene (LDPE) as an alternative material to gold, silver, and copper. An improved set of LDPE reference spectra, corrected for different instrument geometries using a quartz-monochromated Al Kα x-ray source, was developed using data provided by participants in this study. Using these new reference spectra, a transmission function was calculated for each dataset that participants provided. When compared to a similar calibration procedure using the NPL reference spectra for gold, the LDPE intensity calibration method achieves an absolute offset of ∼3.0% and a systematic deviation of ±6.5% on average across all participants. For spectra recorded at high pass energies (≥90 eV), values of absolute offset and systematic deviation are ∼5.8% and ±5.7%, respectively, whereas for spectra collected at lower pass energies (<90 eV), values of absolute offset and systematic deviation are ∼4.9% and ±8.8%, respectively; low pass energy spectra perform worse than the global average, in terms of systematic deviations, due to diminished count rates and signal-to-noise ratio. Differences in absolute offset are attributed to the surface roughness of the LDPE induced by sample preparation. We further assess the usability of LDPE as a secondary reference material and comment on its performance in the presence of issues such as variable dark noise, x-ray warm up times, inaccuracy at low count rates, and underlying spectrometer problems. In response to participant feedback and the results of the study, we provide an updated LDPE intensity calibration protocol to address the issues highlighted in the interlaboratory study. We also comment on the lack of implementation of a consistent and traceable intensity calibration method across the community of x-ray photoelectron spectroscopy (XPS) users and, therefore, propose a route to achieving this with the assistance of instrument manufacturers, metrology laboratories, and experts leading to an international standard for XPS intensity scale calibration. KW - X-ray photoelectron spectroscopy KW - Transmission function KW - Intensity scale calibration KW - Reference spectra KW - Low-density polyethylene (LDPE) PY - 2020 U6 - https://doi.org/10.1116/6.0000577 VL - 38 IS - 6 SP - 063208 AN - OPUS4-51655 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kim, K. J. A1 - Kim, A. S. A1 - Jang, J. S. A1 - Suh, J. K. A1 - Wirth, Thomas A1 - Hodoroaba, Vasile-Dan A1 - Unger, Wolfgang A1 - Araujo, J. R. A1 - Archanjo, B. S. A1 - Galhardo, C. E. A1 - Damasceno, J. A1 - Achete, C. A. A1 - Wang, H. A1 - Wang, M. A1 - Bennett, J. A1 - Simons, D. A1 - Kurokawa, A. A1 - Terauchi, S. A1 - Fujimoto, T. A1 - Streeck, C. A1 - Beckhoff, B. A1 - Spencer, S. A1 - Shard, A. T1 - Measurement of mole fractions of Cu, In, Ga and Se in Cu(In,Ga)Se2 films N2 - CCQM key comparison K-129 for the quantitative analysis of Cu(In,Ga)Se2 (CIGS) films has been performed by the Surface Analysis Working Group (SAWG) of the Consultative Committee for Amount of Substance (CCQM). The objective of this key comparison is to compare the equivalency of the National Metrology Institutes (NMIs) and Designated Institutes (DIs) for the measurement of mole fractions of Cu, In, Ga and Se in a thin CIGS film. The measurand of this key comparison is the average mole fractions of Cu, In, Ga and Se of a test CIGS alloy film in the unit of mole fraction (mol/mol). Mole fraction with the metrological unit of mol/mol can be practically converted to atomic fraction with the unit of at%. In this key comparison, a CIGS film with certified mole fractions was supplied as a reference specimen to determine the relative sensitivity factors (RSFs) of Cu, In, Ga and Se. The mole fractions of the reference specimen were certified by isotope dilution - inductively coupled plasma/mass spectrometry (ID-ICP/MS) and are traceable to the SI. A total number counting (TNC) method was recommended as a method to determine the signal intensities of the constituent elements acquired in the depth profiles by Secondary Ion Mass Spectrometry (SIMS), X-ray Photoelectron Spectroscopy (XPS) and Auger Electron Spectroscopy (AES). Seven NMIs and one DI participated in this key comparison. The mole fractions of the CIGS films were measured by depth profiling based-SIMS, AES and XPS. The mole fractions were also measured by non-destructive X-Ray Fluorescence (XRF) Analysis and Electron Probe Micro Analysis (EPMA) with Energy Dispersive X-ray Spectrometry (EDX). In this key comparison, the average degrees of equivalence uncertainties for Cu, In, Ga and Se are 0.0093 mol/mol, 0.0123 mol/mol, 0.0047 mol/mol and 0.0228 mol/mol, respectively. These values are much smaller than that of Fe in a Fe-Ni alloy film in CCQM K-67 (0.0330 mol/mol). This means that the quantification of multi-element alloy films is possible by depth profiling analysis using the TNC method. KW - CIGS KW - Key comparison KW - CCQM KW - SIMS KW - XPS KW - AES KW - XRF KW - EPMA PY - 2016 UR - http://iopscience.iop.org/article/10.1088/0026-1394/53/1A/08011 U6 - https://doi.org/10.1088/0026-1394/53/1A/08011 SN - 0026-1394 SN - 1681-7575 VL - 53, Technical Supplement SP - Article 08011, 1 EP - 19 PB - IOP Publishing AN - OPUS4-38110 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Reed, B. P. A1 - Cant, D.J.H. A1 - Spencer, S.J. A1 - Carmona-Carmona, A. J. A1 - Bushell, A. A1 - Herrara-Gómez, A. A1 - Kurokawa, A. A1 - Thissen, A. A1 - Thomas, A.G. A1 - Britton, A.J. A1 - Bernasik, A. A1 - Fuchs, A. A1 - Baddorf, A.P. A1 - Bock, B. A1 - Thellacker, B. A1 - Cheng, B. A1 - Castner, D.G. A1 - Morgan, D.J. A1 - Valley, D. A1 - Willneff, E.A. A1 - Smith, E.P. A1 - Nolot, E. A1 - Xie, F. A1 - Zorn, G. A1 - Smith, G.C. A1 - Yasukufu, H. A1 - Fenton, J.L. A1 - Chen, J. A1 - Counsell, J.D.P. A1 - Radnik, Jörg A1 - Gaskell, K.J. A1 - Artyushkova, K. A1 - Yang, L. A1 - Zhang, L. A1 - Eguchi, M. A1 - Walker, M. A1 - Hajdyla, M. A1 - Marzec, M.M. A1 - Linford, M.R. A1 - Kubota, N. A1 - Cortazar-Martinez, O. A1 - Dietrich, P. A1 - Satoh, R. A1 - Schroeder, S.L.M. A1 - Avval, T.G. A1 - Nagatomi, T. A1 - Fernandez, V. A1 - Lake, W. A1 - Azuma, Y. A1 - Yoshikawa, Y. A1 - Compean-Gonzalez, C.L. A1 - Ceccone, G. A1 - Shard, A.G. T1 - ERRATUM: “Versailles project on advanced materials and standards interlaboratory study on intensity calibration for x-ray photoelectron spectroscopy instruments using low-density polyethylene” [J. Vac. Sci. Technol. A 38, 063208 (2020)] N2 - The lead authors failed to name two collaborators as co-authors. The authors listed should include: Miss Claudia L. Compean-Gonzalez (ORCID: 0000-0002-2367-8450) and Dr. Giacomo Ceccone (ORCID: 0000-0003-4637-0771). These co-authors participated in VAMAS project A27, provided data that were analyzed and presented in this publication (and supporting information), and reviewed the manuscript before submission. KW - X-ray photoelectron spectroscopy KW - Transmission function KW - Low-density polyethylene PY - 2021 U6 - https://doi.org/10.1116/6.0000907 VL - 39 IS - 2 SP - 027001 PB - American Vacuum Society AN - OPUS4-52380 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kim, K.J. A1 - Kim, C.S. A1 - Ruh, S. W. A1 - Unger, Wolfgang A1 - Radnik, Jörg A1 - Mata-Salazar, J. A1 - Juarez-Garcia, J.M. A1 - Cortazar-Martinez, O. A1 - Herrera-Gomez, A. A1 - Hansen, P.E. A1 - Madesen, J.S. A1 - Senna, C.A. A1 - Archanjo, B.S. A1 - Damasceno, J.C. A1 - Achete, C.A. A1 - Wang, H. A1 - Wang, M. A1 - Windover, D. A1 - Steel, E. A1 - Kurokawa, A. A1 - Fujimoto, T. A1 - Azuma, Y. A1 - Terauchi, S. A1 - Zhang, L. A1 - Jordaan, W.A. A1 - Spencer, S.J. A1 - Shard, A.G. A1 - Koenders, L. A1 - Krumrey, M. A1 - Busch, I. A1 - Jeynes, C. T1 - Thickness measurement of nm HfO2 films N2 - A pilot study for the thickness measurement of HfO2 films was performed by the Surface Analysis Working Group (SAWG) of the Consultative Committee for Amount of Substance (CCQM). The aim of this pilot study was to ensure the equivalency in the measurement capability of national metrology institutes for the thickness measurement of HfO2 films. In this pilot study, the thicknesses of six HfO2 films with nominal thickness from 1 nm to 4 nm were measured by X-ray Photoelectron Spectroscopy (XPS), X-ray Reflectometry(XRR), X-ray Fluorescence Analysis (XRF), Transmission Electron Spectroscopy (TEM), Spectroscopic Ellipsometry (SE) and Rutherford Backscattering Spectrometry (RBS). The reference thicknesses were determined by mutual calibration of a zero-offset method (Medium Energy Ion Scattering Spectroscopy (MEIS) of KRISS) and a method traceable to the length unit (the average thicknesses of three XRR data except the thinnest film). These reference thicknesses are traceable to the length unit because they are based on the traceability of XRR. For the thickness measurement by XPS, the effective attenuation length of Hf 4f electrons was determined. In the cases of XRR and TEM, the offset values were determined from a linear fitting between the reference thicknesses and the individual data by XRR and TEM. The amount of substance of HfO2, expressed as thickness of HfO2 films (in both linear and areal density units), was found to be a good subject for a CCQM key comparison. To reach the main text of this paper, click on Final Report. The final report has been peer-reviewed and approved for publication by the CCQM. KW - Thickness measurements KW - nm films KW - X-ray Photoelectron Spectroscopy KW - Mutual calibration PY - 2021 U6 - https://doi.org/10.1088/0026-1394/58/1A/08016 SN - 0026-1394 VL - 58 IS - 1a SP - 08016 PB - IOP Publishing Lt. CY - Bristol AN - OPUS4-54175 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kim, K.J. A1 - Jang, J. S. A1 - Kim, A. S. A1 - Suh, J.K. A1 - Chung, Y.-D. A1 - Hodoroaba, Vasile-Dan A1 - Wirth, Thomas A1 - Unger, Wolfgang A1 - Kang, H. J. A1 - Popov, O. A1 - Popov, I. A1 - Kuselman, I. A1 - Lee, Y. H. A1 - Sykes, D. E. A1 - Wang, M. A1 - Wang, H. A1 - Ogiwara, T. A1 - Nishio, M. A1 - Tanuma, S. A1 - Simons, D. A1 - Szakal, C. A1 - Osborn, W. A1 - Terauchi, S. A1 - Ito, M. A1 - Kurokawa, A. A1 - Fujiimoto, T. A1 - Jordaan, W. A1 - Jeong, C. S. A1 - Havelund, R. A1 - Spencer, S. A1 - Shard, A. A1 - Streeck, C. A1 - Beckhoff, B. A1 - Eicke, A. A1 - Terborg, R. T1 - CCQM pilot study P-140: Quantitative surface analysis of multi-element alloy films N2 - A pilot study for the quantitative surface analysis of multi-element alloy films has been performed by the Surface Analysis Working Group (SAWG) of the Consultative Committee for Amount of Substance (CCQM). The aim of this pilot study is to ensure the equivalency in the measurement capability of national metrology institutes for the quantification of multi-element alloy films. A Cu(In,Ga)Se2 (CIGS) film with non-uniform depth distribution was chosen as a representative multi-element alloy film. The atomic fractions of the reference and the test CIGS films were certified by isotope dilution - inductively coupled plasma/mass spectrometry. A total number counting (TNC) method was used as a method to determine the signal intensities of the constituent elements, which are compared with their certified atomic fractions. The atomic fractions of the CIGS films were measured by various methods, such as Secondary Ion Mass Spectrometry (SIMS), Auger Electron Spectroscopy (AES), X-ray Photoelectron Spectroscopy (XPS), X-Ray Fluorescence (XRF) analysis and Electron Probe Micro Analysis (EPMA) with Energy Dispersive X-ray Spectrometry (EDX). Fifteen laboratories from eight National Metrology Institutes (NMIs), one Designated Institute (DI) and six non-NMIs participated in this pilot study. Although the average atomic fractions of 18 data sets showed rather poor relative standard deviations of about 5.5 % to 6.8 %, they were greatly improved to about 1.5 % to 2.2 % by excluding 5 strongly deviating data sets from the average atomic fractions. In this pilot study, the average expanded uncertainties of SIMS, XPS, AES, XRF and EPMA were 3.84%, 3.68%, 3.81%, 2.88% and 2.90%, respectively. These values are much better than those in the key comparison K-67 for composition of a Fe-Ni alloy film. As a result, the quantification of CIGS films using the TNC method was found to be a good candidate as a subject for a CCQM key comparison. KW - CCQM KW - Pilot study KW - Surface analysis KW - Alloy films KW - CIGS PY - 2015 U6 - https://doi.org/10.1088/0026-1394/52/1A/08017 SN - 0026-1394 SN - 1681-7575 VL - 52 IS - Technical Supplement SP - Article 08017 PB - Inst. of Physics Publ. CY - Bristol AN - OPUS4-35306 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Seah, M.P. A1 - Spencer, S.J. A1 - Bensebaa, F. A1 - Vickridge, I. A1 - Danzebrink, H. A1 - Krumrey, M. A1 - Gross, Thomas A1 - Österle, Werner A1 - Wendler, E. A1 - Rheinländer, B. A1 - Azuma, Y. A1 - Kojima, I. A1 - Suzuki, N. A1 - Suzuki, M. A1 - Tanuma, S. A1 - Moon, D.W. A1 - Lee, H.J. A1 - Cho, H.M. A1 - Chen, H.Y. A1 - Wee, A. T. S. A1 - Osipowicz, T. A1 - Pan, J.S. A1 - Jordaan, W.A. A1 - Hauert, R. A1 - Klotz, U. A1 - van der Marel, C. A1 - Verheijen, M. A1 - Tamminga, Y. A1 - Jeynes, C. A1 - Bailey, P. A1 - Biswas, S. A1 - Falke, U. A1 - Nguyen, N.V. A1 - Chandler-Horowitz, D. A1 - Ehrstein, J.R. A1 - Muller, D. A1 - Dura, J.A. T1 - Critical review of the current status of thickness measurements for ultrathin SiO2 on Si - Part V: Results of a CCQM pilot study N2 - Results are reported from a pilot study under the Consultative Committee for Amount of Substance (CCQM) to compare measurements of and resolve any relevant measurement issues in, the amount of thermal SiO2 oxide on (100) and (111) orientation Si wafer substrates in the thickness range 1.5 - 8 nm. As a result of the invitation to participate in this activity, 45 sets of measurements have been made in different laboratories using 10 analytical methods: medium-energy ion scattering spectrometry (MEIS), nuclear reaction analysis (NRA), RBS, elastic backscattering spectrometry (EBS), XPS, SIMS, ellipsometry, grazing-incidence x-ray reflectrometry (GIXRR), neutron reflectometry and transmission electron microscopy (TEM). The measurements are made on separate sets of 10 carefully prepared samples, all of which have been characterised by a combination of ellipsometry and XPS using carefully established reference conditions and reference parameters. The results have been assessed against the National Physical Laboratory (NPL) data and all show excellent linearity. The remaining data sets correlate with the NPL data with average root-mean-square scatters of 0.15 nm, half being better than 0.1 nm and a few at or better than 0.05 nm. Each set of data allows a relative scaling constant and a zero thickness offset to be determined. Each method has an inherent zero thickness offset between 0 nm and 1 nm and it is these offsets, measured here for the first time, that have caused many problems in the past. There are three basic classes of offset: water and carbonadeous contamination equivalent to ~1 nm as seen by ellipsometry; adsorbed oxygen mainly from water at an equivalent thickness of 0.5 nm as seen by MEIS, NRA, RBS and possibly GIXRR; and no offset as seen by XPS using the Si 2p peaks. Each technique has a different uncertainty for the scaling constant and consistent results have been achieved. X-Ray photoelectron spectroscopy has large uncertainties for the scaling constant but a high precision and, critically, if used correctly, has zero offset. Thus, a combination of XPS and the other methods allows the XPS scaling constant to be determined with low uncertainty, traceable via the other methods. XPS laboratories returning results early were invited to test a new reference procedure. All showed very significant improvements. The reference attenuation lengths thus need scaling by 0.986 ± 0.009 (at an expansion factor of 2) deduced from the data for the other methods. Several other methods have small offsets and, to the extent that these can be shown to be constant or measurable, then these methods will also show low uncertainty. Recommendations are provided for parameters for XPS, MEIS, RBS and NRA to improve their accuracy. KW - Calibration KW - Ellipsometry KW - GIXRR KW - Interlaboratory study KW - MEIS KW - Neutron reflectometry KW - NRA KW - RBS KW - Silicon dioxide KW - SIMS KW - XPS PY - 2004 U6 - https://doi.org/10.1002/sia.1909 SN - 0142-2421 SN - 1096-9918 VL - 36 IS - 9 SP - 1269 EP - 1303 PB - Wiley CY - Chichester AN - OPUS4-5549 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Seah, M.P. A1 - Spencer, S.J. A1 - Bensebaa, F. A1 - Vickridge, I. A1 - Danzebrink, H. A1 - Krumrey, M. A1 - Gross, Thomas A1 - Österle, Werner A1 - Wendler, E. A1 - Rheinländer, B. A1 - Azuma, Y. A1 - Kojima, I. A1 - Suzuki, N. A1 - Suzuki, M. A1 - Tanuma, S. A1 - Moon, D.W. A1 - Lee, H.J. A1 - Cho, H.M. A1 - Chen, H.Y. A1 - Wee, A. T. S. A1 - Osipowicz, T. A1 - Pan, J.S. A1 - Jordaan, W.A. A1 - Hauert, R. A1 - Klotz, U. A1 - van der Marel, C. A1 - Verheijen, M. A1 - Tamminga, Y. A1 - Jeynes, C. A1 - Bailey, P. A1 - Biswas, S. A1 - Falke, U. A1 - Nguyen, N.V. A1 - Chandler-Horowitz, D. A1 - Ehrstein, J.R. A1 - Muller, D. A1 - Dura, J.A. T1 - Ultra-thin SiO2 on Si, Part V: Results of a CCQM Pilot Study of Thickness Measurements KW - SiO2 KW - Thin films KW - Thickness KW - XPS KW - Ellipsometry KW - TEM PY - 2003 SN - 1473-2734 SP - 57 pages AN - OPUS4-4118 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -