TY - CONF A1 - Bresch, Sophie T1 - Entwicklung thermoelektrischer Multilayergeneratoren auf der Basis von Calciumcobaltit N2 - Thermoelectric generators can be used as energy harvesters for sensor applications. Multilayer thermoelectric generators (ML-TEGs) are a promising alternative to conventional π-type generators due to their high filling factor, high capability of automated production and the texturing potential during the production process. Calcium cobaltite is a promising thermoelectric oxide (p-type) with highly anisotropic properties. The following study shows the development of a textured unileg ML-TEG using ceramic multilayer technology. Tape-casting and pressure assisted sintering are applied to fabricate textured calcium cobaltite. Compared to conventional sintering, pressure assisted sintering increases the strength by the factor 10. Thermoelectric properties can be tuned either towards maximum power factor or towards maximum figure of merit depending on the pressure level. As electrical insulation material, a screen-printable glass-ceramic with high resistivity and adapted coefficient of thermal expansion is developed. From various commercial pastes a metallization with low contact resistance is chosen. The unileg ML-TEG is co-fired in one single step. The demonstrators reach 80% of the simulated output power and the power output is highly reproducible between the different demonstrators (99%). These results provide the first proof-of-concept for fabricating co-fired multilayer generators based on textured calcium cobaltite with high power factor, high density, and high strength. N2 - Thermoelektrische Generatoren können zum „Energy harvesting“ für den autarken Betrieb von bspw. Sensoren eingesetzt werden. Eine interessante Alternative zu den herkömmlichen π-Typ Generatoren sind auf Grund der höheren Leistungsdichte und der guten Automatisierbarkeit thermoelektrische Multilayergeneratoren. Calciumcobaltit ist ein vielsprechendes oxidisches Thermoelektrika (p-Typ) mit stark anisotropen Eigenschaften. Die hier vorgestellte Studie zeigt die Entwicklung von texturierten Unileg-Multilayer-Generatoren mittels keramischer Multilayertechnologie. Calciumcobaltit wird durch Foliengießen und druckunterstützte Sinterung texturiert. Im Vergleich zur konventionellen Sinterung verbessert sich die Festigkeit um den Faktor 10. Die thermoelektrischen Eigenschaften können je nach verwendetem Druckniveau hinsichtlich maximalem Power Factor oder hinsichtlich maximalem Gütefaktor optimiert werden. Ein Glaskeramikkomposit wird als Isolationsmaterial mit hohem Volumenwiderstand und angepasstem Wärmeausdehnungskoeffizienten entwickelt. Der Unileg-Multilayer-Generator wird in einem Schritt co-gesintert. Die hergestellten Demonstratoren erreichen 80% der simulierten Output-Leistung. Diese Ergebnisse stellen den ersten Machbarkeitsnachweis für die Herstellung von co-gesinterten Multilayer-Generatoren aus texturiertem Calciumcobaltit mit hohem Power Factor und hoher Festigkeit dar. T2 - Seminar des Lehrstuhls für Funktionsmaterialien, Universität Bayreuth CY - Online meeting DA - 18.06.2021 KW - Thermoelektrischer Generator KW - Multilayertechnik KW - Energy harvesting PY - 2021 AN - OPUS4-52834 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bresch, Sophie T1 - Entwicklung oxidkeramischer Werkstoffe und Folien für thermoelektrische Multilayergeneratoren N2 - Calcium cobaltite is a promising oxide thermoelectric materials for applications between 600 °C and 900 °C in air to convert waste heat directly into electrical power. The solid-state reaction, well known for large scale powder synthesis of functional materials, is used for the production of thermoelectric oxides. As a high temperature process, the powder synthesis consumes a lot of energy. In different studies, different synthesis conditions were used for the preparation of calcium cobaltite. To the author’s knowledge, a systematic study of the synthesis conditions of calcium cobaltite and calcium manganate has not yet been published. Therefore, the synthesis conditions for calcium cobaltite (temperature, dwell time, and particle size of raw materials) were studied with a statistical design of experiments (2³) and investigated regarding phase composition (XRD), densification, and thermoelectric properties. This study showed that a higher energy input (elevated temperatures, longer dwell times, or repeated calcinations) during powder synthesis does not improve but deteriorate the thermoelectric properties of calcium cobaltite. The same correlation was determined for the shrinkage. As a higher energy input during powder synthesis leads to a larger grain size and therefore to a reduced sinter activity the shrinkage at a given sinter profile is minimize as well as the thermoelectric properties. These results can be used to minimize the energy demand for the powder synthesis of oxide thermoelectric materials. In addition an increase of power factor by factor 10 can be achieved by applying pressure assisted sintering. T2 - Funktionsmaterialien - Lehrstuhlseminar CY - Bayreuth, Germany DA - 18.11.2016 KW - Thermoelectrics KW - Solid-state-reaction KW - Calcium cobaltite PY - 2016 AN - OPUS4-38375 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bresch, Sophie T1 - Einfluss der Pulversynthese auf die Eigenschaften thermoelektrischer Oxide N2 - Calciumcobaltit und Calciummanganat gehören zu den vielversprechendsten thermoelektrischen Oxiden im Temperaturbereich zwischen 600 °C und 800 °C an Luft. Mittels thermoelektrischer Generatoren kann ein Temperaturgradient direkt in elektrische Leistung umgewandelt werden. Für die kostengünstige Pulverherstellung von Funktionsmaterialien wird im industriellen Maßstab meist die Festphasenreaktion (bzw. Kalzinierung) verwendet. Da es sich dabei um einen Hochtemperaturprozess handelt, ist diese Kalzinierung sehr energieintensiv. In der Literatur werden sehr unterschiedliche Prozessbedingungen zur Pulversynthese thermoelektrischer Oxide genutzt. Soweit dem Autor bekannt, ist keine systematische Untersuchung des Einflusses der Pulversynthesebedingungen auf die thermoelektrischen Eigenschaften publiziert. Deshalb wurde eine systematische Untersuchung des Einflusses der Pulversynthesebedingungen (Temperatur, Haltezeit, Partikelgröße, Wiederholungen) auf die thermoelektrischen Eigenschaften von Calciumcobaltit und Calciummanganat durchgeführt. Es konnte gezeigt werden, dass sich ein höherer Energieeintrag während der Kalzinierung negativ auf die thermoelektrischen Eigenschaften auswirkt. T2 - Seminar des Lehrstuhls für Funktionsmaterialien CY - Universität Bayreuth, Bayreuth, Germany DA - 12.01.2018 KW - Kalzinierung KW - Thermoelektrika KW - Calciummanganat KW - Calciumcobaltit PY - 2018 AN - OPUS4-43772 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stargardt, Patrick A1 - Bresch, Sophie A1 - Falkenberg, Rainer A1 - Mieller, Björn T1 - Effect of Reaction Layers on Internal Stresses in Co‐Fired Multilayers of Calcium Manganate and Calcium Cobaltite JF - physica status solidi (a) N2 - A widespread recovery of waste heat requires a cost‐effective production of thermoelectric generators. Thermoelectric oxides are predestined for use at high temperatures. For manufacturing reasons, a multilayer generator design will be easily scalable and cost‐effective. To evaluate the potential of ceramic multilayer technology for that purpose, a multilayer of the promising thermoelectric oxides calcium cobaltite (Ca3Co4O9), calcium manganate (CMO, CaMnO3), and glass–ceramic insulation layers is fabricated. Cracks and reaction layers at the interfaces are observed in the microstructure. The compositions of these reaction layers are identified by energy‐dispersive X‐ray spectroscopy and X‐ray diffraction. Mechanical and thermal properties of all layers are compiled from literature or determined by purposeful sample preparation and testing. Based on this data set, the internal stresses in the multilayer after co‐firing are calculated numerically. It is shown that tensile stresses in the range of 50 MPa occur in the CMO layers. The reaction layers have only a minor influence on the level of these residual stresses. Herein, it is proven that the material system is basically suitable for multilayer generator production, but that the co‐firing process and the layer structure must be adapted to improve densification and reduce the tensile stresses in the CMO. KW - Ceramic multilayers KW - Co-firings KW - Internal stresses PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-601626 DO - https://doi.org/10.1002/pssa.202300956 SP - 1 EP - 9 PB - Wiley VHC-Verlag AN - OPUS4-60162 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bresch, Sophie T1 - Druckunterstützte Sinterung von Calciumcobaltitfolien N2 - Calcium cobaltite Ca3Co4O9 is a promising p-type oxide thermoelectric material for applications between 600 °C and 900 °C in air. The properties and the morphology of Ca3Co4O9 are strongly anisotropic because of its layered crystal structure. By aligning the plate-like grains, the anisotropic properties can be assigned to the component. Hot-pressing of tablets is a well-known technology for grain alignment of Ca3Co4O9 and increases the thermoelectric properties in a/b-direction remarkably [1-3]. However, hot-pressing of tablets is limited by the tablet size. An interesting alternative for larger components is the pressure assisted sintering of panels from tape casted layers. Tape casting already leads to grain orientation during green body forming. By combining tape casting and pressure assisted sintering (50 kN maximum force) of Ca3Co4O9, high densities and high thermoelectric properties can be reached for large components up to 200 mm edge length. The morphology of Ca3Co4O9-grains can be designed by doping as well as by varying the powder synthesis conditions. For example Bi-doping increases the anisotropy of the grains, and reaction sintering of uncalcined powder leads to a fine grained microstructure and increases the electrical conductivity for pressure-less sintered specimens. Doped and undoped Ca3Co4O9 powders were successfully tape cast with the doctor blade technique. Several layers of tape were stacked and laminated to 7 cm x 7 cm panels. These panels were sintered in a LTCC sintering press with combined in-situ shrinkage measurement. Pressure-less sintered panels from undoped powder have a 2.5 times higher electrical conductivity at room temperature than dry-pressed test bars with randomly orientated particles. By applying a uniaxial pressure of 10 MPa during sintering, the electrical conductivity (σ25°C=15000 S/m) increases by the factor of 6 compared to the pressure-less sintered panels, which is in good accordance to the values reported in literature for conventional hot pressing [1, 3]. It is not possible to assign the increased anisotropy of Ca2.7Bi0.3Co4O9 to the pressure-assisted sintered panels, as Bi leads to an abnormal grain growth (up to 500 µm) with randomly oriented grains. This decreases the electrical conductivity (σ25°C=5000 S/m). Such an abnormal grain-growth is reported for Bi over-doped Ca3Co4O9 [4] but not because of hot-pressing. N2 - Calciumcobaltit ist eines der vielversprechendsten thermoelektrischen Oxide, welche zur direkten Wärmerückgewinnung genutzt werden können. Calciumcobaltit weist sowohl eine anisotrope Partikelform als auch anisotrope thermoelektrische Eigenschaften auf. Durch gezielte Ausrichtung der Partikel mittels Foliengießens und druckunterstützter Sinterung kann diese Anisotropie gezielt auf ein Bauteil übertragen werden. Die Partikelmorphologie kann durch Dotierung und Kalzinierung beeinflusst werden. Verschiedene Calciumcobaltitpulver wurden druckgesintert und das Gefüge sowie die thermoelektrischen Eigenschaften untersucht. Die Dotierung mit Bismut führte zu einer Verschlechterung der elektrischen Leitfähigkeit bei druckgesinterten Proben im Gegensatz zu undotierten Pulvern. T2 - Funktionsmaterialien - Lehrstuhlseminar CY - Bayreuth, Germany DA - 02.06.2017 KW - Thermoelectrics KW - Calcium cobaltite KW - Pressure assisted sintering KW - Druckunterstützte Sinterung KW - Calciumcobaltit KW - Thermoelektrika PY - 2017 AN - OPUS4-40467 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bresch, Sophie A1 - Mieller, Björn A1 - Stargardt, Patrick A1 - Töpfer, Jörg A1 - Moos, Ralf A1 - Rabe, Torsten T1 - Development of textured multilayer thermoelectric generators based on calcium cobaltite N2 - Thermoelectric generators can be used as energy harvesters for sensor applications. Multilayer thermoelectric generators (ML-TEGs) are a promising alternative to conventional π-type generators due to their high filling factor, high capability of automated production and the texturing potential during the production process. Calcium cobaltite is a promising thermoelectric oxide (p-type) with highly anisotropic properties. The following study shows the development of a textured unileg ML-TEG using ceramic multilayer technology. Tape-casting and pressure assisted sintering are applied to fabricate textured calcium cobaltite. Compared to conventional sintering, pressure assisted sintering increases the strength by the factor 10. Thermoelectric properties can be tuned either towards maximum power factor or towards maximum figure of merit depending on the pressure level. As electrical insulation material, a screen-printable glass-ceramic with high resistivity and adapted coefficient of thermal expansion is developed. From various commercial pastes a metallization with low contact resistance is chosen. The unileg ML-TEG is co-fired in one single step. The demonstrators reach 80% of the simulated output power and the power output is highly reproducible between the different demonstrators (99%). These results provide the first proof-of-concept for fabricating co-fired multilayer generators based on textured calcium cobaltite with high power factor, high density, and high strength. T2 - Virtual Conference on Thermoelectrics 2021 (VCT) CY - Online meeting DA - 20.07.2021 KW - Thermoelectrics KW - Multilayertechnik KW - Screen printing PY - 2021 AN - OPUS4-52993 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bresch, Sophie A1 - Stargardt, Patrick A1 - Moos, Ralf A1 - Mieller, Björn T1 - Co‐Fired Multilayer Thermoelectric Generators Based on Textured Calcium Cobaltite JF - Advanced Electronic Materials N2 - Thermoelectric generators are very attractive devices for waste heat energy harvesting as they transform a temperature difference into electrical power. However, commercially available generators show poor power density and limited operation temperatures. Research focuses on high‐temperature materials and innovative generator designs. Finding the optimal design for a given material system is challenging. Here, a theoretical framework is provided that allows appropriate generator design selection based on the particular material properties. For high‐temperature thermoelectric oxides, it can be clearly deduced that unileg multilayer generators have the highest potential for effective energy harvesting. Based on these considerations, prototype unileg multilayer generators from the currently best thermoelectric oxide Ca3Co4O9 are manufactured for the first time by industrially established ceramic multilayer technology. These generators exhibit a power density of 2.2 mW/cm² at a temperature difference of 260 K, matching simulated values and confirming the suitability of the technology. Further design improvements increase the power density by a factor of 22 to facilitate practicable power output at temperature differences as low as 7 K. This work demonstrates that reasonable energy harvesting at elevated temperatures is possible with oxide materials and appropriate multilayer design. KW - Optical and Magnetic Materials KW - Electronic PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-596306 DO - https://doi.org/10.1002/aelm.202300636 SN - 2199-160X VL - 10 IS - 3 SP - 1 EP - 12 PB - Wiley VHC-Verlag AN - OPUS4-59630 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bresch, Sophie A1 - Höhne, Patrick A1 - Mieller, Björn A1 - Koppert, Ralf A1 - Rabe, Torsten T1 - Commercial LTCC for thin film deposition N2 - Low-temperature co-fired ceramics (LTCC) are used to fabricate multilayer circuits which are robust in harsh environments. Thick-film technology is well established for the metallization of circuit boards and microsystems. For specific sensor applications, the combination of LTCC and thin-film technology is advantageous to reach higher structure resolutions. Due to the high roughness of as-fired LTCC surfaces compared with silicon-wafers, the deposition of low-defect- films with narrowly specified properties is challenging. There is spare literature about thin films on commercial LTCC comparing different material systems or sintering techniques. For developing thin film sensors on multilayer circuits it is crucial to identify thin-film-compatible commercial LTCC material as well as the crucial surface properties. In this work we evaluate the thin-film capability of different LTCC surfaces. The as-fired surfaces of free-sintered, constrained-sintered (sacrificial tape), and pressure-assisted sintered commercial LTCCs (DP951, CT708, CT800), as well as respective polished surfaces, were analyzed by tactile and optical roughness measurements and scanning electron microscopy. The thin-film capability of the LTCC surfaces was assessed by sheet resistance and temperature coefficient of resistance (TCR) of deposited Ni thin-film layers. Contrary to the expectations, no correlation between roughness and thin-film capability was found. Ni thin films on constrained sintered DP951 show the lowest sheet resistance and highest TCR within the experimental framework of the as-fired surfaces. The influence of surface morphology on the film properties is discussed. T2 - KERAMIK 2022 / 97. DKG-Jahrestagung CY - Online meeting DA - 7.3.2022 KW - Roughness KW - Hydrogen sensor KW - LTCC PY - 2022 AN - OPUS4-54436 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bresch, Sophie A1 - Höhne, Patrick A1 - Lindemann, Franziska A1 - Koppert, Ralf A1 - Mieller, Björn T1 - Chemical resistance of commercial LTCC against thin film etching media N2 - Low-temperature co-fired ceramics (LTCC) are used to fabricate robust multilayer circuits. Typically, thick-film technology is applied for metallization. For specific sensor applications, thin films are deposited directly on the as-fired LTCC-surface. These deposited thin films are structured either by lift-off or by etching. The latter is less error-prone and thus preferred in industry provided the selected materials allow it. 200 nm Ni-thin films were deposited on three different commercial constrained-sintered LTCC (CT708, CT800 and DP951) by electron beam physical vapour deposition. The thin-films were structured by covering corresponding sections with a UV-curable photo resisn and subsequent etching of the uncovered surface, leaving behind the desired structure. The etched Ni-thin film showed high difference in failure rate and sheet resistance regarding the used LTCC-material. DP951 had the lowest sheet resistance and no failure, whereas the CT800 had a failure rate of 40 %. The LTCC with high failure rate showed a strong chemical attack by the used etching medium. To address this phenomenon, the chemical resistance of the three different commercial LTCC (CT708, CT800 and DP951) against four different commonly used etching media (sulphuric acid, phosphoric acid, aqua regia, and hydrofluoric acid) is investigated. The dissolved ions are analyzed by ICP-OES to correlate the LTCC-composition and its chemical resistance. T2 - KERAMIK 2023 / 98. DKG-Jahrestagung CY - Jena, Germany DA - 27.03.2023 KW - Glass-ceramics KW - Hydrogen sensors KW - Acids PY - 2023 AN - OPUS4-57273 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -