TY - CONF A1 - Bresch, Sophie A1 - Mieller, Björn A1 - Rabe, Torsten T1 - Optimization of Solid-State-Reactions of Calcium Cobaltite Ca3Co4O9 N2 - Calcium cobaltite is a promising p-type oxide thermoelectric material for high temperature applications due to its high figure of merit between 600 °C and 900 °C in air. The solid-state-reaction is well known for large scale powder synthesis of functional materials. As a high temperature process, the powder synthesis consumes a lot of energy. In different studies, different synthesis conditions were used for the preparation of calcium cobaltite powder. This study showed that a higher energy input (elevated temperatures, longer dwell times, or repeated calcinations) during powder synthesis does not increase but decrease the Seebeck coefficient and the electrical conductivity. The same correlation was determined for the densification. As a higher energy input leads to a larger grain size and therefore to a reduced sinter activity, it can be concluded that the thermoelectric properties are correlated with the sinter activity of the powder. These results can be used to minimize the energy demand for the powder synthesis of Ca₃Co₄ O₉. T2 - 14th European Conference on Thermoelectrics CY - Lisbon, Portugal DA - 20.09.2016 KW - Thermoelectrics KW - Solid-State-Reaction KW - Calcium cobaltite PY - 2016 AN - OPUS4-37543 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bresch, Sophie T1 - Entwicklung oxidkeramischer Werkstoffe und Folien für thermoelektrische Multilayergeneratoren N2 - Calcium cobaltite is a promising oxide thermoelectric materials for applications between 600 °C and 900 °C in air to convert waste heat directly into electrical power. The solid-state reaction, well known for large scale powder synthesis of functional materials, is used for the production of thermoelectric oxides. As a high temperature process, the powder synthesis consumes a lot of energy. In different studies, different synthesis conditions were used for the preparation of calcium cobaltite. To the author’s knowledge, a systematic study of the synthesis conditions of calcium cobaltite and calcium manganate has not yet been published. Therefore, the synthesis conditions for calcium cobaltite (temperature, dwell time, and particle size of raw materials) were studied with a statistical design of experiments (2³) and investigated regarding phase composition (XRD), densification, and thermoelectric properties. This study showed that a higher energy input (elevated temperatures, longer dwell times, or repeated calcinations) during powder synthesis does not improve but deteriorate the thermoelectric properties of calcium cobaltite. The same correlation was determined for the shrinkage. As a higher energy input during powder synthesis leads to a larger grain size and therefore to a reduced sinter activity the shrinkage at a given sinter profile is minimize as well as the thermoelectric properties. These results can be used to minimize the energy demand for the powder synthesis of oxide thermoelectric materials. In addition an increase of power factor by factor 10 can be achieved by applying pressure assisted sintering. T2 - Funktionsmaterialien - Lehrstuhlseminar CY - Bayreuth, Germany DA - 18.11.2016 KW - Thermoelectrics KW - Solid-state-reaction KW - Calcium cobaltite PY - 2016 AN - OPUS4-38375 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -