TY - JOUR A1 - Westwood, S. A1 - Martos, G. A1 - Josephs, R. A1 - Choteau, T. A1 - Wielgosz, R. A1 - Davies, S. A1 - Moawad, M. A1 - Tarrant, G. A1 - Chan, B. A1 - Alamgir, M. A1 - de Rego, E. A1 - Wollinger, W. A1 - Garrido, B. A1 - Fernandes, J. A1 - de Sena, R. A1 - Oliveira, R. A1 - Melanson, J. A1 - Bates, J. A1 - Mai Le, P. A1 - Meija, J. A1 - Quan, C. A1 - Huang, T. A1 - Zhang, W. A1 - Ma, R. A1 - Zhang, S. A1 - Hao, Y. A1 - He, Y. A1 - Song, S. A1 - Wang, H. A1 - Su, F. A1 - Zhang, T. A1 - Li, H. A1 - Lam, W. A1 - Wong, W. A1 - Fung, W. A1 - Philipp, Rosemarie A1 - Dorgerloh, Ute A1 - Meyer, Klas A1 - Piechotta, Christian A1 - Riedel, Juliane A1 - Westphalen, Tanja A1 - Giannikopoulou, P. A1 - Alexopoulos, Ch. A1 - Kakoulides, E. A1 - Kitamaki, Y. A1 - Yamazaki, T. A1 - Shimizu, Y. A1 - Kuroe, M. A1 - Numata, M. A1 - Pérez-Castorena, A. A1 - Balderas-Escamilla, M. A1 - Garcia-Escalante, J. A1 - Krylov, A. A1 - Mikheeva, A. A1 - Beliakov, M. A1 - Palagina, M. A1 - Tkachenko, I. A1 - Spirin, S. A1 - Smirnov, V. A1 - Tang Lin, T. A1 - Pui Sze, C. A1 - Juan, W. A1 - Lingkai, W. A1 - Ting, L. A1 - Quinde, L. A1 - Yizhao, C. A1 - Lay Peng, S. A1 - Fernandes-Whaley, M. A1 - Prevoo-Franzsen, D. A1 - Quinn, L. A1 - Nhlapo, N. A1 - Mkhize, D. A1 - Marajh, D. A1 - Chamane, S. A1 - Ahn, S. A1 - Choi, K. A1 - Lee, S. A1 - Han, J. A1 - Baek, S. A1 - Kim, B. A1 - Marbumrung, S. A1 - Jongmesuk, P. A1 - Shearman, K. A1 - Boonyakong, C. A1 - Bilsel, M. A1 - Gündüz, S. A1 - Ün, I. A1 - Yilmaz, H. A1 - Bilsel, G. A1 - Gökçen, T. A1 - Clarkson, C. A1 - Warren, J. A1 - Achtar, E. T1 - Mass fraction assignment of Bisphenol-A high purity material N2 - The CCQM-K148.a comparison was coordinated by the BIPM on behalf of the CCQM Organic Analysis Working Group for NMIs and DIs which provide measurement services in organic analysis under the CIPM MRA. It was undertaken as a "Track A" comparison within the OAWG strategic plan. CCQM-K148.a demonstrates capabilities for assigning the mass fraction content of a solid organic compound having moderate molecular complexity, where the compound has a molar mass in the range (75 - 500) g/mol and is non-polar (pKow < −2), when present as the primary organic component in a neat organic solid and where the mass fraction content of the primary component in the material is in excess of 950 mg/g. Participants were required to report the mass fraction of Bisphenol A present in one supplied unit of the comparison material. Participants using a mass balance method for the assignment were also required to report their assignments of the impurity components present in the material. Methods used by the seventeen participating NMIs or DIs were predominantly based on either stand-alone mass balance (summation of impurities) or qNMR approaches, or the combination of data obtained using both methods. The results obtained using thermal methods based on freezing-point depression methods were also reported by a limited number of participants. There was excellent agreement between assignments obtained using all three approaches to assign the BPA content. The assignment of the values for the mass fraction content of BPA consistent with the KCRV was achieved by most of the comparison participants with an associated relative standard uncertainty in the assigned value in the range (0.1 - 0.5)%. KW - Bisphenol-A KW - Purity assessment KW - Interlaboratory key comparison KW - Metrology PY - 2021 U6 - https://doi.org/10.1088/0026-1394/58/1A/08015 VL - 58 IS - 1A SP - 08015 PB - IOP Publishing AN - OPUS4-54188 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Yang, L. A1 - Vogl, Jochen A1 - Mann, J. A1 - Kraft, R. A1 - Vocke, R. A1 - Pramann, A. A1 - Eberhardt, J. A1 - Rienitz, O. A1 - Lee, K.-S. A1 - Lim, J. S. A1 - Sobina, E. A1 - Song, P. A1 - Wang, J. A1 - Mester, Z. A1 - Meija, J. T1 - Copper isotope delta measurements in high purity materials: CCQM-P213 pilot study N2 - Accurate and precise isotope ratio measurements of heavy elements are playing an increasinglyimportant role in modern analytical sciences and have numerous applications. Today, isotope ratio measurements are typically performed with two principal techniques: thermal ionization mass spectrometry (TIMS) and multiple collector-inductively coupled plasma mass spectrometry (MC-ICP-MS). To obtain accurate results by mass spectrometry, isotopic certified reference materials (iCRMs) are needed for mass bias correction and for the validation of the method used for analysis.Thus, it is of paramount importance to achieve measurement comparability of all data reported, and to assess measurement capability of each CRM producer/National Metrology Institute (NMI). Therefore, the international comparison (CCQM-P213) was performed to assess the analytical capabilities of NMIs for the accurate determination of copper isotope ratio delta values in high purity materials. The study was proposed by the coordinating laboratories, National Research Council Canada (NRC), National Institute of Standards and Technology (NIST), Bundesanstalt für Materialforschung und -prüfung (BAM) and Physikalisch-Technische Bundesanstalt (PTB), as an activity of the Isotope Ratio Working Group (IRWG) of the Consultative Committee for Amount of Substance - Metrology in Chemistry and Biology (CCQM). Participants included six NMIs and one designated institute (DI) from the six countries. Although no measurement method was prescribed by the coordinating laboratories, MC-ICP-MS with either standard-sample bracketing (SSB) or combined SSB with internal normalization (C-SSBIN) models for mass bias correction were recommended. Results obtained from the six NMIs and one DI were in good agreement. KW - Comparability KW - Traceability KW - Metrology KW - Isotope delta KW - Copper PY - 2023 U6 - https://doi.org/10.1088/0026-1394/60/1A/08019 VL - 60 IS - 1A SP - 1 EP - 23 PB - IOP Science AN - OPUS4-58040 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -