TY - JOUR A1 - Driscoll, Laura L. A1 - Driscoll, Elizabeth H. A1 - Dong, Bo A1 - Sayed, Farheen N. A1 - Wilson, Jacob N. A1 - O’Keefe, Christopher A. A1 - Gardner, Dominic J. A1 - Grey, Clare P. A1 - Allan, Phoebe K. A1 - Michalchuk, Adam A. L. A1 - Slater, Peter R. T1 - Under pressure: offering fundamental insight into structural changes on ball milling battery materials JF - Energy & Environmental Science N2 - Synthesis of Li ion battery materials via ball milling has been a huge area of growth, leading to new high-capacity electrode materials, such as a number of promising disordered rocksalt (DRS) phases. In prior work, it was generally assumed that the synthesis was facilitated simply by local heating effects during the milling process. In this work, we show that ball milling Li2MoO4 leads to a phase transformation to the high pressure spinel polymorph and we report electrochemical data for this phase. This observation of the formation of a high pressure polymorph shows that local heating effects alone cannot explain the phase transformation observed (phenakite to spinel) and so indicates the importance of other effects. In particular, we propose that when the milling balls collide with the material, the resulting shockwaves exert a localised pressure effect, in addition to local heating. To provide further support for this, we additionally report ball milling results for a number of case studies (Li2MnO3, Li2SnO3, Nb2O5) which reinforces the conclusion that local heating alone cannot explain the phase transformations observed. The work presented thus provides greater fundamental understanding of milling as a synthetic pathway and suggests potential strategies to prepare such samples without milling (e.g., doping to create internal chemical pressure). In addition, we suggest that further research is needed into the effect of the use of milling as a route to smaller particles, since we believe that such milling may also be affecting the surface structure of the particles through the influence of the shockwaves generated. KW - Pollution KW - Nuclear Energy and Engineering KW - Sustainability and the Environment KW - Environmental Chemistry KW - Renewable Energy PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-590086 DO - https://doi.org/10.1039/d3ee00249g VL - 16 IS - 11 SP - 5196 EP - 5209 PB - Royal Society of Chemistry (RSC) AN - OPUS4-59008 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Weller, Andreas A1 - Zhang, Z. A1 - Slater, L. A1 - Kruschwitz, Sabine A1 - Halisch, M. T1 - Induced polarization and pore radius — A discussion JF - Geophysics N2 - Permeability estimation from induced polarization (IP) measurements is based on a fundamental premise that the characteristic relaxation time τ is related to the effective hydraulic radius reff controlling fluid flow. The approach requires a reliable estimate of the diffusion coefficient of the ions in the electrical double layer. Others have assumed a value for the diffusion coefficient, or postulated different values for clay versus clay-free rocks. We have examined the link between a widely used single estimate of τ and reff for an extensive database of sandstone samples, in which mercury porosimetry data confirm that reff is reliably determined from a modification of the Hagen-Poiseuille equation assuming that the electrical tortuosity is equal to the hydraulic tortuosity. Our database does not support the existence of one or two distinct representative diffusion coefficients but instead demonstrates strong evidence for six orders of magnitude of variation in an apparent Diffusion coefficient that is well-correlated with reff and the specific surface area per unit pore volume Spor. Two scenarios can explain our findings: (1) the length scale defined by τ is not equal to reff and is likely much longer due to the control of pore-surface roughness or (2) the range of diffusion coefficients is large and likely determined by the relative proportions of the different minerals (e.g., silica and clays) making up the rock. In either case, the estimation of reff (and hence permeability) is inherently uncertain from a single characteristic IP relaxation time as considered in this study. KW - Spectral induced polarisation KW - Pore radius KW - Permeability KW - Specific surface KW - Mercury intrusion PY - 2016 DO - https://doi.org/10.1190/GEO2016-0135.1 SN - 0016-8033 SN - 1942-2156 VL - 81 IS - 5 SP - D519 EP - D526 AN - OPUS4-38393 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weller, Andreas A1 - Zhang, Zeyu A1 - Slater, L. A1 - Kruschwitz, Sabine A1 - Halisch, M. T1 - Induced polarization and pore radius - a discussion T2 - IP2016 / 4th International Workshop on Induced Polarization N2 - Permeability estimation from spectral induced polarization (SIP) measurements is based on a fundamental premise that the characteristic relaxation time (t) is related to the effective hydraulic radius (reff) controlling fluid flow. The approach requires a reliable estimate of the diffusion coefficient of the ions in the electrical double layer. Others have assumed a value for the diffusion coefficient, or postulated different values for clay versus clay-free rocks. We examine the link between t and reff for an extensive database of sandstone samples where mercury porosimetry data confirm that reff is reliably determined from a modification of the Hagen- Poiseuille equation assuming that the electrical tortuosity is equal to the hydraulic tortuosity. Our database does not support the existence of 1 or 2 distinct representative diffusion coefficients but instead demonstrates strong evidence for 6 orders of magnitude of variation in an apparent diffusion coefficient that is well correlated with both reff and the specific surface area per unit pore volume (Spor). Two scenarios can explain our findings: (1) the length-scale defined by t is not equal to reff and is likely much longer due to the control of pore surface roughness; (2) the range of diffusion coefficients is large and likely determined by the relative proportions of the different minerals (e.g. silica, clays) making up the rock. In either case, the estimation of reff (and hence permeability) is inherently uncertain from SIP relaxation time. T2 - IP Workshop 2016 CY - Aarhus, Denmark DA - 06.06.2016 KW - Pore radius KW - Mercury intrusion capillary pressure KW - Spectral induced polarization KW - Relaxation time PY - 2016 SP - 1 EP - 4 AN - OPUS4-37004 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kemna, A. A1 - Binley, A. A1 - Cassiani, G. A1 - Niederleithinger, Ernst A1 - Revil, A. A1 - Slater, L. A1 - Williams, K. H. A1 - Orozco, A.F. A1 - Haegel, F.-H. A1 - Hördt, A. A1 - Kruschwitz, Sabine A1 - Leroux, V. A1 - Titov, K. A1 - Zimmermann, E. T1 - An overview of the spectral induced polarization method for near-surface applications JF - Near surface geophysics N2 - Over the last 15 years significant advancements in induced polarization (IP) research have taken place, particularly with respect to spectral IP (SIP), concerning the understanding of the mechanisms of the IP phenomenon, the conduction of accurate and broadband laboratory measurements, the modelling and inversion of IP data for imaging purposes and the increasing application of the method in near-surface investigations. We summarize here the current state of the science of the SIP method for near-surface applications and describe which aspects still represent open issues and should be the focus of future research efforts. Significant progress has been made over the last decade in the understanding of the microscopic mechanisms of IP; however, integrated mechanistic models involving different possible polarization processes at the grain/pore scale are still lacking. A prerequisite for the advances in the mechanistic understanding of IP was the development of improved laboratory instrumentation, which has led to a continuously growing data base of SIP measurements on various soil and rock samples. We summarize the experience of numerous experimental studies by formulating key recommendations for reliable SIP laboratory measurements. To make use of the established theoretical and empirical relationships between SIP characteristics and target petrophysical properties at the field scale, sophisticated forward modelling and inversion algorithms are needed. Considerable progress has also been made in this field, in particular with the development of complex resistivity algorithms allowing the modelling and inversion of IP data in the frequency domain. The ultimate goal for the future are algorithms and codes for the integral inversion of 3D, time-lapse and multi-frequency IP data, which defines a 5D inversion problem involving the dimensions space (for imaging), time (for monitoring) and frequency (for spectroscopy). We also offer guidelines for reliable and accurate measurements of IP spectra, which are essential for improved understanding of IP mechanisms and their links to physical, chemical and biological properties of interest. We believe that the SIP method offers potential for subsurface structure and process characterization, in particular in hydrogeophysical and biogeophysical studies. KW - Induced polarisation KW - Review KW - Moisture KW - Soil KW - Masonry resistivity PY - 2012 DO - https://doi.org/10.3997/1873-0604.2012027 SN - 1569-4445 VL - 101 IS - 6 SP - 453 EP - 468 PB - EAGE - European Association of Geoscientists & Engineers CY - Houten AN - OPUS4-27433 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -