TY - CONF A1 - Lengas, Nikolaos A1 - Mair, Georg W. A1 - Müller, Karsten A1 - Sklorz, Christian A1 - Wang, Bin A1 - Natasya, Riska T1 - Overview of experimental testing at BAM: Hydraulic pressure, drop and fire tests N2 - Safe onboard storage is clearly one of the greatest challenges for the hydrogen economy. Even if hydrogen vehicles offer better efficiency, technological barriers remain for short-term implementation. Hydrogen storage difficulties stem from its low density, necessitating very high pressure for storage. In addition, the weight, volume, efficiency, safety of storage as well as the cost of the hydrogen must be considered. Safety is of paramount importance for deployment of hydrogen technologies as it is flammable in a wide range of concentrations with air, more sensitive to ignition due to its low minimum ignition energy, deflagrates faster due to higher burning velocity, and is prone to deflagration-to-detonation transition. Various safety measures must be implemented in order to prevent accidental leakage and ensure inherent safety. Today, the strategy of the OEM’s prioritises the development of a single electrical drivetrain platform where the battery pack is mounted in the underbody of the vehicle. The automotive industry aims to use this same space for hydrogen storage systems, with the expectation that such conformable hydrogen storage systems will be available in the next 3-5 years. The main innovations of BAM’s specialist divisions 3.5 and 8.6 in this project are, firstly, the integration of optical fibres in the filament winding of complete pressure to gain a deeper understanding of the structural behaviour under the different hydraulic and pneumatic loading conditions, and secondly, the development of a fire test platform to test the assembly of 9 tubular vessels under the fire test requirements of GTR13. Therefore, a wind damping and splinter-protecting cage was built from protection modules specifically developed for this project. Extensive safety-related tests are to be carried out at BAM during the project period. T2 - Stakeholders’ Meeting CY - Brussels, Belgium DA - 26.09.2024 KW - Composite pressure vessel KW - Drop test KW - Hydraulic pressure test KW - Fire test PY - 2024 AN - OPUS4-61167 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Romero-Navarrete, José A. A1 - Otremba, Frank A1 - Sklorz, Christian A1 - Martínez Madrid, M. T1 - Quasistatic rollover threshold of atmospheric road tankers N2 - Several geometrical analytical tools can be used for assessing the potential benefits of any alternative tank shape. The quasistatic evaluation of the cargo-vehicle behavior represents a fast way to objectively determine the roll stability benefits of any potentially new tank shape. In this paper, the geometrical, quasistatic rollover performance of a convex bottom tank shape is compared with that of standard tank shapes, finding that in spite of the lower position of the cargo´s center of gravity in such a tank shape for the un-perturbed condition, it has the same performance as the elliptical tank shape when subjected to Steady lateral acceleration. That as a result of the large cargo´s lateral displacement. Consequently, the combination of a lower center of gravity for the cargo when it is not perturbed, and a Minimum lateral shift due to lateral accelerations inputs, define the conditions for an ideal tank shape. T2 - CONIIN 2020 CY - Online meeting DA - 28.09.2020 KW - Tank shape KW - Road tankers KW - Center of gravity shifting KW - Quasistatic KW - Convex bottom KW - Geometrical analysis PY - 2020 SP - 1 EP - 6 AN - OPUS4-51388 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mair, Georg W. A1 - Hajhariri, Aliasghar A1 - Sklorz, Christian A1 - Kriegsmann, Andreas A1 - Müller, Karsten T1 - A modular concept for protection against debris flight - Design, properties and usage N2 - With advances in technological development, stationary and mobile storage units for compressed hydrogen are becoming larger and larger. Their number is also increasing. At the same time, their design has evolved from steel and aluminium to pressure vessels made of composite materials. For safety reasons the design approval of those composite cylinders requires fire engulfment tests, which are mainly organised as open-air tests always needs dedicated protection measures. Under some conditions those protections measures even reduce the effort for organisational safety measures if e.g. the emission of splinters can get totally prevented. Another aspect is the improved reproducibility of fire tests by reducing the influence of wind. Between 2017 and 2019, BAM developed a stackable protective frame made of steel to safely capture splinters for the safe execution of high-energy impact tests. However, this frame was not flexible enough for the follow-up project, which led to a completely new protection concept for (potentially) destructive tests on gas-filled pressure vessels. This concept is based on very robust building blocks made from welded steel. Despite their considerable weight of around 500 kg p.p., they can be combined and stacked very easily like ‘Lego bricks’. The presentation will show the flexibility of the concept, some results of tests on the robustness against pressure waves and the effectiveness in wind attenuation. Finally, the interaction with a new, also modular burner concept for localised fires and full engulfment fires will be presented. T2 - 11th International conference on hydrogen safety (ICHS 2025) CY - Seoul, Republic of Korea DA - 22.09.2025 KW - Splinter protection KW - Pressure vessel testing KW - Fire engulfment KW - Destructive tests KW - Rupture KW - Gaseous tests KW - Pressure wave KW - Test equipment KW - Precaution measures PY - 2025 SN - 979-1-2243-0274-2 VL - 2025 SP - 1428 EP - 1439 AN - OPUS4-65100 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sklorz, Christian A1 - Balke, Christian A1 - Otremba, Frank T1 - Fire protection systems for above-ground storage tanks N2 - Liquefied propane gas (LPG) tanks in a fully engulfing accidental fire experience a fast increase in internal pressure. The result is often a Boiling Liquid Expanding Vapor Explosion (BLEVE) that can result in a large fireball and flying debris over a radius of more than 100 meters. In the last 30 years BAM has carried out more than 30 real scale fire tests on propane storage vessels across three test sites. The primary research goal was to identify systems that can delay or prevent a BLEVE. Early studies started with water deluge systems, and have since moved on to consider alternative protection systems. It has been shown that an unprotected vessel fails within 10 minutes or less. Tests with different oil and propane fueled fires have given an overview on possible real accidents involving full-engulfing scenarios. LPG tanks of various sizes (2.7 m³, 3.6 m³, 4.8 m³, 6.7 m³) were used with different filling levels. Numerous protection systems, ranging from active systems like water systems to passive thick- and thin-film layers. Also, the degree of thickness of these layers was variated. Pressure relief valves (PRV) have also been investigated, both alone and in combination with protection systems. This paper gives an overview of the work performed by BAM in the field of BLEVE prevention of protecting system since the last 30 years. It has been shown that e.g. with a full applied coating degree on the tank with and without PRV can be reached an exposition in a test fire scenario a duration of more than 60min. For partly coated tanks with and without PRV the duration time is like an unprotected vessel. Furthermore, it could be shown that the active water system also protects with technically correct design. T2 - Loss Prevention 2019 CY - Delft, Niederlande DA - 16.06.2019 KW - Fire KW - Protection systems KW - Propane storage tanks PY - 2019 SN - 978-88-95608-72-3 VL - 75 SP - 1 EP - 6 AN - OPUS4-49021 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sklorz, Christian T1 - Fire protection systems for above ground storage tanks N2 - Liquefied propane gas (LPG) tanks in a fully engulfing accidental fire experience a fast increase in internal pressure. The result is often a Boiling Liquid Expanding Vapor Explosion (BLEVE) that can result in a large fireball and flying debris over a radius of more than 100 meters. In the last 30 years BAM has carried out more than 30 real scale fire tests on propane storage vessels across three test sites. The primary research goal was to identify systems that can delay or prevent a BLEVE. Early studies started with water deluge systems, and have since moved on to consider alternative protection systems. It has been shown that an unprotected vessel fails within 10 minutes or less. Tests with different oil and propane fueled fires have given an overview on possible real accidents involving full-engulfing scenarios. LPG tanks of various sizes (2.7 m³, 3.6 m³, 4.8 m³, 6.7 m³) were used with different filling levels. Numerous protection systems, ranging from active systems like water systems to passive thick- and thin-film layers. Also, the degree of thickness of these layers was variated. Pressure relief valves (PRV) have also been investigated, both alone and in combination with protection systems. This paper gives an overview of the work performed by BAM in the field of BLEVE prevention of protecting system since the last 30 years. It has been shown that e.g. with a full applied coating degree on the tank with and without PRV can be reached an exposition in a test fire scenario a duration of more than 60min. For partly coated tanks with and without PRV the duration time is like an unprotected vessel. Furthermore, it could be shown that the active water system also protects with technically correct design. T2 - Loss Prevention 2019 CY - Delft, The Netherlands DA - 16.06.2019 KW - Fire protection systems KW - Popane storage tanks PY - 2019 AN - OPUS4-49022 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sklorz, Christian T1 - Simulation eines Poolfeuers im 1m³ Ofen N2 - Zur Charakterisierung von Brandschutzbeschichtungssystemen für Gas- Lagertanks ist ein Großbrandversuch erforderlich. Zur Ermittlung der produktspezifischen Beschichtungsdicke sind Plattenbrandversuche notwendig. Für Brandprüfungen existieren verschiedene Brandkurven (z.B. ETK, Hydrocarbonkurve, Schwelbrandkurve, BAM-Kurve) um Prüfmuster je nach Anwendungsfall zu zertifizieren. Diese Brandkurven unterscheiden sich hinsichtlich des Temperaturgradienten. Zur Gewährleistung der Übertragbarkeit der BAM-Prüföfen (Kleinprüfstand DIN 4102-8 (Klep) und 1-m³ Ofen) auf die NORM ISO 21843 (2018-09) ist es erforderlich einen Wärmeintrag von 90 – 120 kW/m² in das Prüfmuster zu garantieren. T2 - TF-IF CY - Berlin, Germany DA - 16.09.2019 KW - Brandversuch KW - Fire testing KW - Ofen PY - 2019 AN - OPUS4-49250 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Popiela, Bartosz A1 - Günzel, Stephan A1 - Sklorz, Christian A1 - Widjaja, Martinus Putra A1 - Mair, Georg W. A1 - Seidlitz, Holger T1 - Application of the incremental hole-drilling method for residual stress determination in type 4 pressure vessels N2 - Hole-drilling method is a standardized technique for obtaining residual stresses in isotropic structures. Previous studies provide a foundation that enables the use of this method to investigate orthotropic structures, such as fiber-reinforced composites. In this study, the incremental hole-drilling method was applied to investigate residual stresses in filament wound type 4 composite pressure vessels. The investigated composite cylinders were manufactured with different internal pressure functions during the winding process, to achieve distinct residual stress states. Additionally, the influence of the initial loading under sustained internal pressure and increased temperature on the stress distribution was investigated. It was shown that the residual stress state can be influenced by varying the internal pressure in the winding process. After testing at sustained load and increased temperature, a stress redistribution was observed, which took place due to creep phenomena. Finally, a discussion of the challenges for the application of the hole-drilling method to composite pressure vessels is provided. KW - Hole-drilling method KW - Filament winding KW - Type 4 composite pressure vessels KW - Residual stresses KW - Stress redistribution PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-627765 DO - https://doi.org/10.1515/mt-2024-0328 SN - 2195-8572 VL - 67 IS - 4 SP - 663 EP - 674 PB - Walter de Gruyter GmbH AN - OPUS4-62776 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -