TY - CONF A1 - Iancu, O.T. A1 - Otremba, Frank A1 - Sklorz, Christian T1 - Comparison between analytical and finite element calculation for pressurized container T2 - IMECE 2014 - ASME International mechanical engineering congress and exposition (Proceedings) N2 - The prediction of the plastic collapse load of cylindrical pressure vessels is very often made by using expensive Finite Element Computations. The calculation of the collapse load requires an elastic-plastic material model and the consideration of non-linear geometry effects. The plastic collapse load causes overalls structural instability and cannot be determined directly from a finite element analysis. The ASME (2007) code recommends that the collapse load should be the load for which the numerical solution does not converge. This load can be only determined approximately if a expensive nonlinear analysis consisting of a very large number of sub steps is done. The last load sub step leading to a convergent solution will be taken as the critical load for the structure. In the instability regime no standard finite element solution can be found because of the lack of convergence of the numerical procedure. Other methods for the calculation of the allowable pressure proposed by the ASME code are the elastic stress analysis and the limit load analysis. In the present paper the plastic collapse load for a cylindrical pressure vessel is determined by an analytical method based on a linear elastic perfectly plastic material model. When plasticity occurs the material is considered as incompressible and the tensor of plastic strains is parallel to the stress deviator tensor. In that case the finite stress-strain relationships of Henkel can be used for calculating the pressure for which plastic flow occurs at the inside of the vessel wall or in the case of full plasticity in the wall. The analytical results are fully confirmed by finite element predictions both for axisymmetric and high costs three dimensional models. The analytical model can be used for fast predictions of the allowable load for the design of a large variety of pressure vessels under safety considerations. The accuracy of the predicted collapse load largely depends on the quality of the temperature dependent wall material data used both in the analytical and numerical calculations. T2 - IMECE 2014 - ASME International mechanical engineering congress and exposition CY - Montreal, Quebec, Canada DA - 14.11.2014 PY - 2014 SN - 978-0-7918-4958-3 SP - Paper 36106, 1 EP - 5 PB - Amer soc mechanical engineers CY - New York, NY, USA AN - OPUS4-32317 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sklorz, Christian A1 - Otremba, Frank A1 - Balke, Christian T1 - Performance of dangerous goods tanks in a fire - Part II T2 - Fire Retardancy and Protection of Materials (FRPM 15) T2 - Fire Retardancy and Protection of Materials (FRPM 15) CY - BAM TTS Brandprüfstände (Baruth) DA - 2015-06-22 PY - 2015 AN - OPUS4-33651 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sklorz, Christian T1 - Fall- und Brandprüfungen auf dem BAM TTS N2 - Es werden die Prüfmöglichkeiten auf dem BAM TTS des Fachbereiches 3.2 vorgestellt und die technischen Daten bereitgestellt. T2 - 5. RAM-Behältersicherheitstage CY - Berlin DA - 16.03.2016 KW - Brandversuch KW - Fallversuch PY - 2016 AN - OPUS4-35754 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sklorz, Christian A1 - Otremba, Frank T1 - Simulation eines Poolfeuers im 1m³ Ofen N2 - Zur Charakterisierung von Brandschutzbeschichtungssystemen für Gas- Lagertanks ist ein Großbrandversuch erforderlich. Zur Ermittlung der produktspezifischen Beschichtungsdicke sind Plattenbrandversuche notwendig. Für Brandprüfungen existieren verschiedene Brandkurven (z.B. ETK, Hydrocarbonkurve, Schwelbrandkurve, BAM-Kurve) um Prüfmuster je nach Anwendungsfall zu zertifizieren. Diese Brandkurven unterscheiden sich hinsichtlich des Temperaturgradienten. Zur Gewährleistung der Übertragbarkeit der BAM-Prüföfen (Kleinprüfstand DIN 4102-8 (Klep) und 1-m³ Ofen) auf die NORM ISO 21843 (2018-09) ist es erforderlich einen Wärmeintrag von 90 – 120 kW/m² in das Prüfmuster zu garantieren. T2 - TF-IF CY - Berlin, Germany DA - 16.09.2019 KW - Brandversuch KW - Fire testing KW - Ofen PY - 2019 AN - OPUS4-49250 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sklorz, Christian A1 - Balke, Christian A1 - Otremba, Frank T1 - Fire protection systems for above-ground storage tanks T2 - Chemical Engineering Transactions N2 - Liquefied propane gas (LPG) tanks in a fully engulfing accidental fire experience a fast increase in internal pressure. The result is often a Boiling Liquid Expanding Vapor Explosion (BLEVE) that can result in a large fireball and flying debris over a radius of more than 100 meters. In the last 30 years BAM has carried out more than 30 real scale fire tests on propane storage vessels across three test sites. The primary research goal was to identify systems that can delay or prevent a BLEVE. Early studies started with water deluge systems, and have since moved on to consider alternative protection systems. It has been shown that an unprotected vessel fails within 10 minutes or less. Tests with different oil and propane fueled fires have given an overview on possible real accidents involving full-engulfing scenarios. LPG tanks of various sizes (2.7 m³, 3.6 m³, 4.8 m³, 6.7 m³) were used with different filling levels. Numerous protection systems, ranging from active systems like water systems to passive thick- and thin-film layers. Also, the degree of thickness of these layers was variated. Pressure relief valves (PRV) have also been investigated, both alone and in combination with protection systems. This paper gives an overview of the work performed by BAM in the field of BLEVE prevention of protecting system since the last 30 years. It has been shown that e.g. with a full applied coating degree on the tank with and without PRV can be reached an exposition in a test fire scenario a duration of more than 60min. For partly coated tanks with and without PRV the duration time is like an unprotected vessel. Furthermore, it could be shown that the active water system also protects with technically correct design. T2 - Loss Prevention 2019 CY - Delft, Niederlande DA - 16.06.2019 KW - Fire KW - Protection systems KW - Propane storage tanks PY - 2019 SN - 978-88-95608-72-3 VL - 75 SP - 1 EP - 6 AN - OPUS4-49021 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sklorz, Christian T1 - Fire protection systems for above ground storage tanks N2 - Liquefied propane gas (LPG) tanks in a fully engulfing accidental fire experience a fast increase in internal pressure. The result is often a Boiling Liquid Expanding Vapor Explosion (BLEVE) that can result in a large fireball and flying debris over a radius of more than 100 meters. In the last 30 years BAM has carried out more than 30 real scale fire tests on propane storage vessels across three test sites. The primary research goal was to identify systems that can delay or prevent a BLEVE. Early studies started with water deluge systems, and have since moved on to consider alternative protection systems. It has been shown that an unprotected vessel fails within 10 minutes or less. Tests with different oil and propane fueled fires have given an overview on possible real accidents involving full-engulfing scenarios. LPG tanks of various sizes (2.7 m³, 3.6 m³, 4.8 m³, 6.7 m³) were used with different filling levels. Numerous protection systems, ranging from active systems like water systems to passive thick- and thin-film layers. Also, the degree of thickness of these layers was variated. Pressure relief valves (PRV) have also been investigated, both alone and in combination with protection systems. This paper gives an overview of the work performed by BAM in the field of BLEVE prevention of protecting system since the last 30 years. It has been shown that e.g. with a full applied coating degree on the tank with and without PRV can be reached an exposition in a test fire scenario a duration of more than 60min. For partly coated tanks with and without PRV the duration time is like an unprotected vessel. Furthermore, it could be shown that the active water system also protects with technically correct design. T2 - Loss Prevention 2019 CY - Delft, The Netherlands DA - 16.06.2019 KW - Fire protection systems KW - Popane storage tanks PY - 2019 AN - OPUS4-49022 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Romero-Navarrete, José A. A1 - Otremba, Frank A1 - Sklorz, Christian A1 - Martínez Madrid, M. T1 - Quasistatic rollover threshold of atmospheric road tankers T2 - CONiiN XVI International Engineering Congress N2 - Several geometrical analytical tools can be used for assessing the potential benefits of any alternative tank shape. The quasistatic evaluation of the cargo-vehicle behavior represents a fast way to objectively determine the roll stability benefits of any potentially new tank shape. In this paper, the geometrical, quasistatic rollover performance of a convex bottom tank shape is compared with that of standard tank shapes, finding that in spite of the lower position of the cargo´s center of gravity in such a tank shape for the un-perturbed condition, it has the same performance as the elliptical tank shape when subjected to Steady lateral acceleration. That as a result of the large cargo´s lateral displacement. Consequently, the combination of a lower center of gravity for the cargo when it is not perturbed, and a Minimum lateral shift due to lateral accelerations inputs, define the conditions for an ideal tank shape. T2 - CONIIN 2020 CY - Online meeting DA - 28.09.2020 KW - Tank shape KW - Road tankers KW - Center of gravity shifting KW - Quasistatic KW - Convex bottom KW - Geometrical analysis PY - 2020 SP - 1 EP - 6 AN - OPUS4-51388 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Otremba, Frank A1 - Hildebrand, R. A1 - Romero Navarrete, J. A. A1 - Sklorz, Christian ED - Otremba, Frank T1 - A simplified analytical approach on the dynamic pressures in cylindrical vertical tanks T2 - Transactions on Engineering Technologies N2 - A simplified methodology is proposed to estimate the dynamic pressures developed within partially filled cylindrical vertical tanks when subjected to earthquake-related horizontal accelerations. The total pressure at the bottom of the tank is calculated as the superposition of vertical and horizontal pressures. While the magnitude of the vertical pressure depends on the free surface height of the liquid, the horizontal pressure depends on the magnitude of the horizontal acceleration and on the diameter of the tank. The liquid free surface oscillation angle is simulated based upon the principles of the simple pendulum analogy for sloshing. The length of the pendulum, however, is set on the basis of a methodology to calculate the free sloshing frequency of partially filled containers. Such a methodology is experimentally verified in this work. The outputs of the model for full scale situations, suggest that the lateral perturbation - sloshing phenomenon (earthquake effect) can generate an increase in the total pressure of 56% above the no lateral perturbation situation, further suggesting that such an overpressure should be taken into account when designing tanks that could be potentially subjected to earthquake-related perturbations. KW - Vertical cylindrical tanks KW - Pendulum analogy KW - Experimental approach KW - Sloshing, transition matrix approach KW - Hazmat PY - 2021 SN - 978-981-15-8273-8 SP - 1 EP - 15 PB - Springer AN - OPUS4-51982 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pötzsch, Sina A1 - Timme, Sebastian A1 - Sklorz, Christian A1 - Skoczowsky, Danilo A1 - Otremba, Frank A1 - Krüger, Simone T1 - Fire protection systems for tanks made of GFRP T2 - IMECE 2017 conference proceedings N2 - The application of lightweight materials for tanks for transportation appears promising. Besides saving weight and therefore transportation costs, new complex geometries that depart from common cylindrical shapes of steel tanks can be manufactured. For transportation of dangerous goods, fire and explosion safety must be maintained to prevent accidents with serious consequences. In this work the fire behavior of lightweight tanks made from glass fiber reinforced plastics (GFRP) with complex geometries is investigated. Pretests on intermediate scale GFRP plates are conducted to identify suitable fire protection systems and surface treatments for composite tanks. The fire resistance is shown to be improved by addition of fire protective coatings and integrated layers. Finally, a complex rectangular GFRP tank with a holding capacity of 1100 liters is fire protected with an intumescent fire coating. The tank is filled up to 80 % with water and burned under an engulfing fully developed fire. It was shown that the intumescent layer could expand before the decomposition of the resin occurred. Furthermore, the adhesion between tank surface and coating was maintained. The structure could withstand a fire for more than 20 min. T2 - ASME International Mechanical Engineering Congress and Exposition (IMECE) 2017 CY - Tampa, Florida, USA DA - 03.11.2017 KW - Lightweight tank KW - Composites in fire KW - GFRP KW - Fire retardants KW - Intumescent layer PY - 2017 SN - 978-0-7918-5849-3 VL - 14 SP - Article UNSP V014T14A017, 1 EP - 6 PB - ASME Press AN - OPUS4-42991 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pötzsch, Sina A1 - Krüger, Simone A1 - Sklorz, Christian A1 - Borch, Jörg A1 - Hilse, Thilo A1 - Otremba, Frank T1 - The fire resistance of lightweight composite tanks depending on fire protection systems JF - Fire Safety Journal N2 - To save weight and resources lightweight tanks with complex geometries made of glass-fibre reinforced plastics (GFRP) are a promising innovation for the transportation of dangerous goods. To realise the use of polymer tanks for such applications, their fire safety must be guaranteed. This paper presents solutions to protect fibre-reinforced plastic tanks from fire. The fire resistance of six GFRP tanks with different fire protection systems was tested in an outdoor full-scale fire test facility according to the regulation stipulated in the ADR (European agreement concerning the national carriage of dangerous goods by road). All tanks feature a complex geometry and a holding capacity of 1100 litres. The fire protection systems are composed of specialised resins as well as two intumescent coatings. All systems had a protective impact. The best results were achieved by the epoxy based intumescent coating, which was able to prolong the time needed to reach 150 °C inside the tank by 20 min. The emergence of a temperature holding point inside the tank due to condensation effects was observed at temperatures around 100 °C. KW - Fire safety composite tanks PY - 2018 UR - https://www.sciencedirect.com/science/article/pii/S0379711218301644 DO - https://doi.org/10.1016/j.firesaf.2018.08.007 SN - 0379-7112 SN - 1873-7226 VL - 100 SP - 118 EP - 127 PB - Elsevier Ltd. AN - OPUS4-45697 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -