TY - JOUR A1 - Pentzien, Simone A1 - Conradi, Andrea A1 - Koter, Robert A1 - Krüger, Jörg T1 - Cleaning of artificially soiled paper using nanosecond, picosecond and femtosecond laser pulses N2 - Cleaning of cultural assets, especially fragile organic materials like paper, is a part of the conservation process. Laser radiation as a non-contact tool offers prospects for that purpose. For the studies presented here, paper model samples were prepared using three different paper types (pure cellulose, rag paper, and wood-pulp paper). Pure cellulose serves as reference material. Rag and woodpulp paper represent essential characteristics of the basic materials of real-world artworks. The papers were mechanically soiled employing pulverized charcoal. Pure and artificially soiled paper samples were treated with laser pulses of 28 fs (800 nm wavelength) and 8–12 ns (532 nm) duration in a multi pulse approach. Additionally, the cellulose reference material was processed with 30 ps (532 nm) laser pulses. Damage and cleaning thresholds of pure and soiled paper were determined for the different laser regimes. Laser working ranges allowing for removal of contamination and avoiding permanent modification to the substrate were found. The specimens prior and after laser illumination were characterized by light-optical microscopy (OM) and scanning electron microscopy (SEM) as well as multi spectral imaging analysis. The work extends previous nanosecond laser cleaning investigations on paper into the ultra-short pulse duration domain. KW - Laser cleaning KW - Ablation KW - Laser impact on surfaces KW - Paper KW - Femtosecond laser PY - 2010 DO - https://doi.org/10.1007/s00339-010-5809-7 SN - 0947-8396 VL - 101 IS - 2 SP - 441 EP - 446 PB - Springer CY - Berlin AN - OPUS4-22155 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pentzien, Simone A1 - Conradi, Andrea A1 - Koter, Robert A1 - Krüger, Jörg ED - Engel, P. ED - Schirò, J. ED - Larsen, R. ED - Moussakova, E. ED - Kecskeméti, I. T1 - Cleaning of soiled paper model samples using short and ultrashort laser pulses N2 - Paper is one of the most important materials representing and witnessing human culture particularly as a carrier medium for text and image. As soiling hampers the reception of information, paper cleaning techniques are needed. Traditional mechanical and chemical cleaning methods are used by conservator-restorers. In some cases, a classical cleaning procedure of paper objects yields unsatisfactory results or a conventional treatment is even impossible. Especially, fragile paper objects cause problems due to mechanical instabilities. Laser cleaning as a non-contact method might be a way to overcome some of the limitations of classical cleaning techniques. Laser parameters have to be chosen to achieve removal of the soiling without influencing the artwork. Any immediate as well as long-term effects causing an irreversible change of the artwork have to be avoided. At present, most laser applications are found in stone and metal conservation, while laser treatment of complex organic materials like paper is still not fully developed for application in conservators' workshops. This contribution describes recent work of pulsed laser cleaning of soiled model samples. Pure cellulose, rag paper and wood-pulp paper were mechanically soiled with pulverized charcoal in a standardized procedure to make model samples representing essential characteristics of contaminated real-world artworks. Afterwards, model samples were cleaned using short and ultrashort laser pulses in the nanosecond and femtosecond time domain, respectively. An extensive analysis of the model samples after laser treatment using an optical microscope and a multi-spectral imaging system allows a comparison of the cleaning results obtained with both laser sources. T2 - Conference 'New Approaches to Book and Paper Conservation - Restoration' CY - Horn, Austria DA - 09.05.2011 KW - Laser cleaning KW - Ablation KW - Laser impact on surfaces KW - Paper KW - Femtosecond laser KW - Nanosecond laser PY - 2011 SN - 978-3-85028-518-6 SP - 519 EP - 532 PB - Verlag Berger, Horn CY - Vienna, Austria AN - OPUS4-23705 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bonse, Jörn A1 - Koter, Robert A1 - Hartelt, Manfred A1 - Spaltmann, Dirk A1 - Pentzien, Simone A1 - Höhm, S. A1 - Rosenfeld, A. A1 - Krüger, Jörg T1 - Tribological performance of femtosecond laser-induced periodic surface structures on titanium and a high toughness bearing steel N2 - Laser-induced periodic surface structures (LIPSS, ripples) were processed on steel (X30CrMoN15-1) and titanium (Ti) surfaces by irradiation in air with linear polarized femtosecond laser pulses with a pulse duration of 30 fs at 790 nm wavelength. For the processing of large LIPSS covered surface areas (5 mm × 5 mm), the laser fluence and the spatial spot overlap were optimized in a sample-scanning geometry. The laser-processed surfaces were characterized by optical microscopy (OM), white light interference microscopy (WLIM) and scanning electron microscopy (SEM). Spatial LIPSS periods between 450 and 600 nm were determined. The nanostructured surface regions were tribologically tested under reciprocal sliding conditions against a 10-mm diameter ball of hardened 100Cr6 steel. Paraffin oil and engine oil were used as lubricants for 1000 sliding cycles at 1 Hz with a normal load of 1.0 N. The corresponding wear tracks were analyzed by OM and SEM. In particular cases, the laser-generated nanostructures endured the tribological treatment. Simultaneously, a significant reduction of the friction coefficient and the wear was observed in the laser-irradiated (LIPSS-covered) areas when compared to the non-irradiated surface. The experiments reveal the potential benefit of laser surface structuring for tribological applications. KW - Laser-induced periodic surface structures (LIPSS) KW - Femtosecond laser processing KW - Tribology KW - Metals PY - 2015 DO - https://doi.org/10.1016/j.apsusc.2014.08.111 SN - 0169-4332 SN - 1873-5584 VL - 336 SP - 21 EP - 27 PB - North-Holland CY - Amsterdam AN - OPUS4-32861 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Bonse, Jörn A1 - Höhm, S. A1 - Hartelt, Manfred A1 - Spaltmann, Dirk A1 - Pentzien, Simone A1 - Koter, Robert A1 - Marschner, S. A1 - Rosenfeld, A. A1 - Krüger, Jörg ED - König, K. ED - Ostendorf, A. T1 - Femtosecond laser-induced surface nanostructures for tribological applications N2 - Laser-induced periodic surface structures (LIPSS) were generated on two types of steel (100Cr6, X30CrMoN15-1) and two types of titanium (Ti, Ti6A14V) surfaces upon irradiation with multiple linear polarized femtosecond laser pulses in air environment (pulse duration 30 fs, central wavelength 790 nm, pulse repetition rate 1 kHz, Gaussian beam shape). Teh conditions (laser fluence, spatial spot overlap) were optimized in a sample-scanning geometry for the processing of large surface areas covered homogeneously by two different types of LIPSS - either near wavelength or sub-100 nm structures. The tribological performance of the nanostructured surfaces was characterized under reciprocating sliding at 1 Hz against a ball of hardened steel using different lubricants and normal forces. After 1000 cycles the corresponding wear tracks were characterized by optical and scanning electron microscopy. For specific conditions, the wear was strongly reduced and laser-generated nanostructures endured the tribological treatment. Simultaneously, a significant reduction of the friction coefficient was observed in the laser-irradiated LIPSS-covered areas, indicating the benefit of laser surface structuring for tribological applications. The spatially Gaussian shaped beam used for the laser processing was transformed via beam shaping into a top hat distribution at the surface of the samples for optimization. The tribological performance of the laser-induced nanostructures is discussed on the basis of different physical and chemical mechanisms. PY - 2015 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-332647 SN - 978-3-11-033718-1 SN - 978-3-11-035432-4 DO - https://doi.org/10.1515/9783110354324-011 SP - Chapter 7, 141 EP - 156 PB - De Gruyter AN - OPUS4-33264 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Legall, Herbert A1 - Schwanke, Christoph A1 - Pentzien, Simone A1 - Dittmar, G. A1 - Bonse, Jörn A1 - Krüger, Jörg T1 - X-ray emission as a potential hazard during ultrashort pulse laser material processing N2 - In laser machining with ultrashort laser pulses unwanted X-ray radiation in the keV range can be generated when a critical laser intensity is exceeded. Even if the emitted X-ray dose per pulse is low, high laser repetition rates can lead to an accumulation of X-ray doses beyond exposure safety limits. For 925 fs pulse duration at a center wavelength of 1030 nm, the X-ray emission was investigated up to an intensity of 2.6 × 10^14 W/cm2. The experiments were performed in air with a thin disk laser at a repetition rate of 400 kHz. X-ray spectra and doses were measured for various planar target materials covering a wide range of the periodic table from aluminum to tungsten. Without radiation shielding, the measured radiation doses at this high repetition rate clearly exceed the regulatory limits. Estimations for an adequate radiation shielding are provided. KW - Laser-induced X-ray emission KW - Ultrashort laser material interaction KW - Femtosecond laser KW - Radiation protection PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-448431 DO - https://doi.org/10.1007/s00339-018-1828-6 SN - 0947-8396 SN - 1432-0630 VL - 124 IS - 6 SP - Article 407, 1 EP - 8 PB - Springer AN - OPUS4-44843 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schmidt, Birgit Angelika A1 - Ziemann, M. A A1 - Pentzien, Simone A1 - Gabsch, T. A1 - Koch, W. A1 - Krüger, Jörg T1 - Technical analysis of a Central Asian wall painting detached from a Buddhist cave temple on the northern Silk Road N2 - A great number of Central Asian wall paintings, archeological materials, architectural fragments, and textiles, as well as painting fragments on silk and paper, make up the so called Turfan Collection at the Asian Art Museum in Berlin. The largest part of the collection comes from the Kucha region, a very important cultural center in the third to ninth centuries. Between 1902 and 1914, four German expeditions traveled along the northern Silk Road. During these expeditions, wall paintings were detached from their original settings in Buddhist cave complexes. This paper reports a technical study of a wall painting, existing in eight fragments, from the Buddhist cave no. 40 (Ritterhöhle). Its original painted surface is soot blackened and largely illegible. Grünwedel, leader of the first and third expeditions, described the almost complete destruction of the rediscovered temple complex and evidence of fire damage. The aim of this case study is to identify the materials used for the wall paintings. Furthermore, soot deposits as well as materials from conservation interventions were of interest. Non-invasive analyses were preferred but a limited number of samples were taken to provide more precise information on the painting technique. By employing optical and scanning electron microscopy, energy dispersive X-ray spectroscopy, micro X-ray fluorescence spectroscopy, X-ray diffraction analysis, and Raman spectroscopy, a layer sequence of earthen render, a ground layer made of gypsum, and a paint layer containing a variety of inorganic pigments were identified. KW - Wall paintings KW - Central Asia KW - Silk Road KW - Pigments KW - Microscopy PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-357297 DO - https://doi.org/10.1179/2047058414Y.0000000152 VL - 61 IS - 2 SP - 113 EP - 122 PB - Routledge Taylor & Francis Group CY - London AN - OPUS4-35729 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bonse, Jörn A1 - Höhm, S. A1 - Koter, Robert A1 - Hartelt, Manfred A1 - Spaltmann, Dirk A1 - Pentzien, Simone A1 - Rosenfeld, A. A1 - Krüger, Jörg T1 - Tribological performance of sub-100-nm femtosecond laser-induced periodic surface structures on titanium N2 - Sub-100-nm laser-induced periodic surface structures (LIPSS) were processed on bulk titanium (Ti) surfaces by femtosecond laser pulse irradiation in air (30 fs pulse duration, 790 nm wavelength). The laser peak fluence, the spatial spot overlap, and the number of overscans were optimized in a sample-scanning geometry in order to obtain large surface areas (5 mm × 5 mm) covered homogeneously by the LIPSS. The laser-processed regions were characterized by optical microscopy (OM), white light interference microscopy (WLIM) and scanning electron microscopy (SEM). The friction coefficient of the nanostructured surfaces was tested during 1000 cycles under reciprocal sliding conditions (1 Hz, 1.0 N normal load) against a 10-mm diameter ball of hardened 100Cr6 steel, both in paraffin oil and in engine oil used as lubricants. Subsequently, the corresponding wear tracks were qualified by OM, SEM, and energy dispersive X-ray analyses (EDX). The results of the tribological tests are discussed and compared to that obtained for near wavelength-sized fs-LIPSS, processed under somewhat different irradiation conditions. Some constraints for a beneficial effect of LIPSS on the tribological performance are provided. KW - Femtosecond laser ablation KW - Laser-induced periodic surface structures, LIPSS KW - Friction KW - Wear KW - Nanostructures KW - Surface functionalization PY - 2016 UR - http://www.sciencedirect.com/science/article/pii/S0169433215026987 DO - https://doi.org/10.1016/j.apsusc.2015.11.019 SN - 0169-4332 SN - 1873-5584 VL - 374 SP - 190 EP - 196 PB - Elsevier B.V. CY - Amsterdam, Netherlands AN - OPUS4-35937 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schmidt, Birgit Angelika A1 - Pentzien, Simone A1 - Conradi, Andrea A1 - Krüger, Jörg A1 - Roth, C. A1 - Beier, O. A1 - Hartmann, A. A1 - Grünler, B. T1 - Decontamination of biocidal loaded wooden artworks by means of laser and plasma processing N2 - Many wooden artworks are contaminated by DDT (dichlorodiphenyltrichloroethane) as a result of a surface treatment by means of the liquid preservative Hylotox-59©. It was used until the end of the 1980s. DDT crystal structures are formed on the wood surfaces by the "blooming" of chlorine compounds. In addition to an aesthetic disturbance, it is assumed that DDT represents a health risk. Even decades after applying, the toxins in the wood preservatives are still detectable because they are of low volatility in many wood samples. Contaminated waste wood with natural biocide ageing, gilded and wood carved elements of an old picture frame and wooden samples with paint layers were provided by the Schlossmuseum Sondershausen. Non-contact procedures using laser and plasma appear reasonable to remove the DDT crystals. During the experiments, health and safety issues for the operator have to be taken into account. The removal of DDT was evaluated employing femtosecond and nanosecond laser radiation and cold atmospheric plasma techniques with different working gases (air, nitrogen, and argon). Before laser application, a chlorine measurement representing the DDT density on the wooden surface is done by X-ray fluorescence (XRF) analysis as reference. After laser processing, the XRF analysis is used again at the same surface position to determine the depletion rate. Additionally, a documentation and characterization of the sample surface is performed before and after laser and plasma treatment using optical microscopy (OM). For plasma processing with various systems a chlorine measurement is done by gas chromatographic-mass spectrometry (GCMS) analysis. T2 - 11th Conference on Lasers in the Conservation of Artworks CY - Kraków, Poland DA - 20.09.2016 KW - Decontamination KW - DDT KW - Wooden artworks KW - Femtosecond laser KW - Cold atmospheric pressure plasma PY - 2017 SN - 978-83-231-3875-4 DO - https://doi.org/10.12775/3875-4.17 SP - 241 EP - 251 PB - NCU Press CY - Toruń AN - OPUS4-43526 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bonse, Jörn A1 - Kirner, Sabrina A1 - Koter, Robert A1 - Pentzien, Simone A1 - Spaltmann, Dirk A1 - Krüger, Jörg T1 - Femtosecond laser-induced periodic surface structures on titanium nitride coatings for tribological applications N2 - Titanium nitride (TiN) was coated on different substrate materials, namely pure titanium (Ti), titanium alloy (Ti6Al4V) and steel (100Cr6), generating 2.5 μm thick TiN layers. Using femtosecond laser pulses (30 fs, 790 nm, 1 kHz pulse repetition rate), large surface areas (5 mm × 5 mm) of laser-induced periodic surface structures (LIPSS) with sub-wavelength periods ranging between 470 nm and 600 nm were generated and characterized by optical microscopy (OM), white light interference microscopy (WLIM) and scanning electron microscopy (SEM). In tribological tests, coefficients of friction (COF) of the nanostructured surfaces were determined under reciprocating sliding conditions (1 Hz, 1.0 N normal load) against a 10-mm diameter ball of hardened 100Cr6 steel during 1000 cycles using two different lubricants, namely paraffin oil and engine oil. It turned out that the substrate material, the laser fluence and the lubricant are crucial for the tribological performance. However, friction and wear could not be significantly reduced by LIPSS on TiN layers in comparison to unstructured TiN surfaces. Finally, the resulting wear tracks on the nanostructured surfaces were investigated with respect to their morphology (OM, SEM), depth (WLIM) and chemical composition by energy dispersive X-ray spectroscopy (EDX) and, on one hand, compared with each other, on the other hand, with non-structured TiN surfaces. KW - Laser-induced periodic surface structures (LIPSS) KW - Femtosecond laser ablation KW - Titanium nitride films KW - Friction KW - Wear PY - 2017 UR - http://www.sciencedirect.com/science/article/pii/S0169433216322486 DO - https://doi.org/10.1016/j.apsusc.2016.10.132 SN - 0169-4332 SN - 1873-5584 VL - 418 IS - Part B SP - 572 EP - 579 PB - Elsevier B.V. CY - Amsterdam AN - OPUS4-40507 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schmidt, Birgit Angelika A1 - Pentzien, Simone A1 - Conradi, Andrea A1 - Krüger, Jörg T1 - Femtosecond and nanosecond laser decontaminations of biocidal-loaded wooden artworks N2 - Until the end of the 1980s many wooden artworks underwent surface treatment by liquid preservatives, e.g. Hylotox-59. DDT (dichlorodiphenyltrichloroethane) crystal structures are formed on the wooden surfaces by the "blooming" of chlorine compounds by time. In addition to an aesthetic disturbance, it is assumed that DDT represents a health risk. Therefore, the removal of DDT crystals from the surfaces is requested. Contaminated wood with natural biocide ageing, gilded and wood carved elements and wooden samples with paint layers were provided by the Schlossmuseum Sondershausen, Germany. Laser cleaning on selected surface areas on the objects was done by means of femtosecond and nanosecond laser pulses. For the same object, cleaning results using 30-fs laser pulses at 800 nm wavelength are compared to findings utilizing 10-ns laser pulses at 1064 nm wavelength. Before and after laser treatment, chlorine measurements at the same surface position were done by X-ray fluorescence analysis (XRF) as an indicator for the presence of DDT. In this way, pointwise chlorine depletion rates can be obtained for the different pulse duration regimes and wavelengths. Additionally, the object surfaces were examined using optical microscopy and multi spectral imaging analysis. T2 - EMRS Spring Meeting 2017, Symposium X “New frontiers in laser interaction: from hard coatings to smart materials" CY - Strasbourg, France DA - 22.05.2017 KW - Laser cleaning KW - Decontamination KW - Wood KW - DDT KW - Femtosecond laser PY - 2017 DO - https://doi.org/10.1007/s00339-017-1316-4 SN - 0947-8396 SN - 1432-0630 VL - 123 IS - 11 SP - Article 696, 1 EP - 9 PB - Springer AN - OPUS4-42564 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -