TY - JOUR A1 - Mann, Guido A1 - Pentzien, Simone A1 - Krüger, Jörg T1 - Beam diameter dependence of surface damage threshold of fused silica fibers and preforms for nanosecond laser treatment at 1064 nm wavelength N2 - Optical fibers made of fused silica are a common method of transmitting high laser pulse energies. Failure of those fibers is a significant risk. The determination of laser-induced damage thresholds (LIDT) on fiber end facets according to ISO 21254 standard is needed. In the past, single pulse nanosecond laser experiments showed an improvement of LIDT with increasing fiber core diameter for 1064 nm wavelength and a constant beam diameter of 50 µm. This paper pays particular attention to the influence of the laser beam diameter on damage resistance. All-silica fiber types (LEONI) with different core diameters (100–600 µm) were investigated using beam diameters in a range from 30 µm to 100 µm. For comparison experiments on fused silica preform material (Heraeus F300) were performed. On one hand, surface LIDT of fused silica preform material decreases significantly with increasing beam size. A model considering a random distribution of point defects explains the experimental data qualitatively. On the other hand, LIDT of fiber end facets stays constant. White light microscopy results suggest that the point defect density on fiber end facets is lower compared to the preform surface due to an excellent surface polish quality. KW - Laser-induced damage threshold KW - Nanosecond laser KW - Optical fiber KW - Fused silica KW - Spot size KW - Defect model PY - 2013 DO - https://doi.org/10.1016/j.apsusc.2013.03.088 SN - 0169-4332 SN - 1873-5584 VL - 276 SP - 312 EP - 316 PB - Elsevier B.V. CY - Amsterdam AN - OPUS4-28310 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pentzien, Simone A1 - Rabin, Ira A1 - Hahn, Oliver A1 - Krüger, Jörg A1 - Kleber, F. A1 - Hollaus, F. A1 - Diem, M. A1 - Sablatnig, R. T1 - Can modern technologies defeat nazi censorship? KW - Laser cleaning KW - Multispectral imaging KW - Image enhancement KW - Ancient manuscripts KW - Image restoration PY - 2010 SN - 1556-4673 VL - 2 IS - 3, Article 1 SP - 1 EP - 16 PB - Association for Computing Machinery CY - New York, NY, USA AN - OPUS4-25651 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wurster, R. A1 - Pentzien, Simone A1 - Conradi, Andrea A1 - Krüger, Jörg T1 - Characterization of laser-generated microparticles by means of a dust monitor and SEM imaging N2 - Nanosecond laser (1064 nm wavelength) cleaning of artificially soiled paper as a model sample simulating a real-world artwork was performed. During the cleaning process, the ejection of particles was monitored in situ by means of a dust monitor (8 size classes, ranging from 0.3 µm to >2 µm) and ex situ using a mini-cascade impactor (MKI, 5 stages). The cleaning result was analyzed by scanning electron microscopy (SEM) considering possible laser-induced damages to the substrate. Size distributions of emitted particles were measured depending on the processing parameters: laser fluence, F, and pulse number per spot, N. High numbers of large (>2 µm) particles were collected by the mini-cascade impactor indicating a gas dynamical liftoff process. Obviously, these particles were not affected by the laser-matter interaction. The different methods (SEM, MKI, and dust monitor) are compared with respect to their usefulness for a proper interpretation of the cleaning results. PY - 2006 DO - https://doi.org/10.1155/2006/31862 SN - 0278-6273 SN - 1476-3516 VL - 2006 IS - Article ID 31862 SP - 1 EP - 5(?) PB - Harwood Academic Publ. CY - London AN - OPUS4-14467 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pentzien, Simone A1 - Conradi, Andrea A1 - Koter, Robert A1 - Krüger, Jörg T1 - Cleaning of artificially soiled paper using nanosecond, picosecond and femtosecond laser pulses N2 - Cleaning of cultural assets, especially fragile organic materials like paper, is a part of the conservation process. Laser radiation as a non-contact tool offers prospects for that purpose. For the studies presented here, paper model samples were prepared using three different paper types (pure cellulose, rag paper, and wood-pulp paper). Pure cellulose serves as reference material. Rag and woodpulp paper represent essential characteristics of the basic materials of real-world artworks. The papers were mechanically soiled employing pulverized charcoal. Pure and artificially soiled paper samples were treated with laser pulses of 28 fs (800 nm wavelength) and 8–12 ns (532 nm) duration in a multi pulse approach. Additionally, the cellulose reference material was processed with 30 ps (532 nm) laser pulses. Damage and cleaning thresholds of pure and soiled paper were determined for the different laser regimes. Laser working ranges allowing for removal of contamination and avoiding permanent modification to the substrate were found. The specimens prior and after laser illumination were characterized by light-optical microscopy (OM) and scanning electron microscopy (SEM) as well as multi spectral imaging analysis. The work extends previous nanosecond laser cleaning investigations on paper into the ultra-short pulse duration domain. KW - Laser cleaning KW - Ablation KW - Laser impact on surfaces KW - Paper KW - Femtosecond laser PY - 2010 DO - https://doi.org/10.1007/s00339-010-5809-7 SN - 0947-8396 VL - 101 IS - 2 SP - 441 EP - 446 PB - Springer CY - Berlin AN - OPUS4-22155 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Krüger, Jörg A1 - Pentzien, Simone A1 - Conradi, Andrea T1 - Cleaning of artificially soiled paper with 532-nm nanosecond laser radiation N2 - Cleaning of paper is a challenging task due to the fact that a contamination should be removed and a fragile organic original material has to be preserved. Pulsed laser cleaning of artificially soiled Whatman© filter paper samples serving as models for historical paper was performed. Different cleaning strategies employing 8-ns laser pulses at 532 nm wavelength were applied to clean paper avoiding undesired effects like discoloration (yellowing) and mechanical deterioration of the substrate. Multi shot experiments with low-energy pulses were compared with single pulse investigations utilizing high pulse energies achieving a constant energy load incident on the samples in both cases. The cleaning efficiency and possible yellowing effects were evaluated by means of a multi spectral imaging system. An extensive microscopic analysis of the cleaned parts of the samples provided insight into the remaining soiling on the surface and in the bulk of the paper material after laser treatment. As a reference, a hard and a soft eraser were used to clean the samples. KW - Laser cleaning KW - Paper KW - Colorimetry PY - 2008 DO - https://doi.org/10.1007/s00339-008-4476-4 SN - 0947-8396 VL - 92 IS - 1 SP - 179 EP - 183 PB - Springer CY - Berlin AN - OPUS4-17331 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kautek, Wolfgang A1 - Pentzien, Simone A1 - Conradi, Andrea A1 - Leichtfried, D. A1 - Puchinger, L. T1 - Diagnostics of parchment laser cleaning in the near-ultraviolet and near-infrared wavelength range: a systematic scanning electron microscopy study N2 - A detailed diagnostic study of the interaction of nanosecond laser pulses from the near-ultraviolet to the near-infrared wavelength range with various types of contemporary and ancient parchments is presented. The advantages of laser cleaning due to the absence of chemical agents, spectroscopic selectivity, micro-precision and computer-aided handling can only be verified when physico-chemical diagnostics guarantee destructionless processing. Scanning electron microscopy data are correlated with chemical degradation and morphological changes dependent on the laser fluence and wavelength. It is also shown how transmission electron microscopy, diffuse reflectance infrared Fourier transform spectroscopy, and pyrolysis capillary gas chromatography can be employed in the chemical diagnostics of laser cleaning of parchment. This study suggests that the ageing status of parchment artefacts plays a major role in assessing the laser cleaning limits. PY - 2003 DO - https://doi.org/10.1016/S1296-2074(02)01195-0 SN - 1296-2074 SN - 1778-3674 VL - 4 IS - sup.1 SP - 179s EP - 184s PB - Elsevier CY - Paris AN - OPUS4-5989 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schmidt, Birgit Angelika A1 - Pentzien, Simone A1 - Conradi, Andrea A1 - Krüger, Jörg T1 - Femtosecond and nanosecond laser decontaminations of biocidal-loaded wooden artworks N2 - Until the end of the 1980s many wooden artworks underwent surface treatment by liquid preservatives, e.g. Hylotox-59. DDT (dichlorodiphenyltrichloroethane) crystal structures are formed on the wooden surfaces by the "blooming" of chlorine compounds by time. In addition to an aesthetic disturbance, it is assumed that DDT represents a health risk. Therefore, the removal of DDT crystals from the surfaces is requested. Contaminated wood with natural biocide ageing, gilded and wood carved elements and wooden samples with paint layers were provided by the Schlossmuseum Sondershausen, Germany. Laser cleaning on selected surface areas on the objects was done by means of femtosecond and nanosecond laser pulses. For the same object, cleaning results using 30-fs laser pulses at 800 nm wavelength are compared to findings utilizing 10-ns laser pulses at 1064 nm wavelength. Before and after laser treatment, chlorine measurements at the same surface position were done by X-ray fluorescence analysis (XRF) as an indicator for the presence of DDT. In this way, pointwise chlorine depletion rates can be obtained for the different pulse duration regimes and wavelengths. Additionally, the object surfaces were examined using optical microscopy and multi spectral imaging analysis. T2 - EMRS Spring Meeting 2017, Symposium X “New frontiers in laser interaction: from hard coatings to smart materials" CY - Strasbourg, France DA - 22.05.2017 KW - Laser cleaning KW - Decontamination KW - Wood KW - DDT KW - Femtosecond laser PY - 2017 DO - https://doi.org/10.1007/s00339-017-1316-4 SN - 0947-8396 SN - 1432-0630 VL - 123 IS - 11 SP - Article 696, 1 EP - 9 PB - Springer AN - OPUS4-42564 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bonse, Jörn A1 - Koter, Robert A1 - Hartelt, Manfred A1 - Spaltmann, Dirk A1 - Pentzien, Simone A1 - Höhm, S. A1 - Rosenfeld, A. A1 - Krüger, Jörg T1 - Femtosecond laser-induced periodic surface structures on steel and titanium alloy for tribological applications N2 - Laser-induced periodic surface structures (LIPSS, ripples) were generated on stainless steel (100Cr6) and titanium alloy (Ti6Al4V) surfaces upon irradiation with multiple femtosecond laser pulses (pulse duration 30 fs, central wavelength 790 nm). The experimental conditions (laser fluence, spatial spot overlap) were optimized in a sample-scanning geometry for the processing of large surface areas (5 × 5 mm²) covered homogeneously by the nanostructures. The irradiated surface regions were subjected to white light interference microscopy and scanning electron microscopy revealing spatial periods around 600 nm. The tribological performance of the nanostructured surface was characterized by reciprocal sliding against a ball of hardened steel in paraffin oil and in commercial engine oil as lubricants, followed by subsequent inspection of the wear tracks. For specific conditions, on the titanium alloy a significant reduction of the friction coefficient by a factor of more than two was observed on the laser-irradiated (LIPSS-covered) surface when compared to the non-irradiated one, indicating the potential benefit of laser surface structuring for tribological applications. PY - 2014 DO - https://doi.org/10.1007/s00339-014-8229-2 SN - 0947-8396 VL - 117 IS - 1 SP - 103 EP - 110 PB - Springer CY - Berlin AN - OPUS4-31450 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bonse, Jörn A1 - Kirner, Sabrina A1 - Koter, Robert A1 - Pentzien, Simone A1 - Spaltmann, Dirk A1 - Krüger, Jörg T1 - Femtosecond laser-induced periodic surface structures on titanium nitride coatings for tribological applications N2 - Titanium nitride (TiN) was coated on different substrate materials, namely pure titanium (Ti), titanium alloy (Ti6Al4V) and steel (100Cr6), generating 2.5 μm thick TiN layers. Using femtosecond laser pulses (30 fs, 790 nm, 1 kHz pulse repetition rate), large surface areas (5 mm × 5 mm) of laser-induced periodic surface structures (LIPSS) with sub-wavelength periods ranging between 470 nm and 600 nm were generated and characterized by optical microscopy (OM), white light interference microscopy (WLIM) and scanning electron microscopy (SEM). In tribological tests, coefficients of friction (COF) of the nanostructured surfaces were determined under reciprocating sliding conditions (1 Hz, 1.0 N normal load) against a 10-mm diameter ball of hardened 100Cr6 steel during 1000 cycles using two different lubricants, namely paraffin oil and engine oil. It turned out that the substrate material, the laser fluence and the lubricant are crucial for the tribological performance. However, friction and wear could not be significantly reduced by LIPSS on TiN layers in comparison to unstructured TiN surfaces. Finally, the resulting wear tracks on the nanostructured surfaces were investigated with respect to their morphology (OM, SEM), depth (WLIM) and chemical composition by energy dispersive X-ray spectroscopy (EDX) and, on one hand, compared with each other, on the other hand, with non-structured TiN surfaces. KW - Laser-induced periodic surface structures (LIPSS) KW - Femtosecond laser ablation KW - Titanium nitride films KW - Friction KW - Wear PY - 2017 UR - http://www.sciencedirect.com/science/article/pii/S0169433216322486 DO - https://doi.org/10.1016/j.apsusc.2016.10.132 SN - 0169-4332 SN - 1873-5584 VL - 418 IS - Part B SP - 572 EP - 579 PB - Elsevier B.V. CY - Amsterdam AN - OPUS4-40507 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pérez Blanes, H. A1 - Ghiasi, P. A1 - Sandkühler, J. A1 - Yesilcicek, Yasemin A1 - Pentzien, Simone A1 - Conradi, Andrea A1 - Prinz, Carsten A1 - Al-Sabbagh, Dominik A1 - Thünemann, Andreas A1 - Ozcan, Ozlem A1 - Witt, Julia T1 - High CO2 reduction activity on AlCrCoCuFeNi multi-principal element alloy nanoparticle electrocatalysts prepared by means of pulsed laser ablation N2 - Noble metal-free nanoparticles (NPs) based on multi-principal element alloys (MPEAs) were synthesized using a one-step pulsed laser ablation in liquids (PLALs) method for the electrochemical reduction of CO2. Laser ablation was performed in pure water or poly-(diallyldimethylammonium chloride) (PDADMAC)-containing an aqueous solution of Al8Cr17Co17Cu8Fe17Ni33 MPEA targets. Transmission electron microscopy (TEM) measurements combined with energy dispersive X-ray (EDX) mapping were used to characterize the structure and composition of the laser-generated MPEA nanoparticles (MPEA-NPs). These results confirmed the presence of a characteristic elemental distribution of a core-shell phase structure as the predominant NP species. The electrocatalytic performance of the laser-generated MPEA-NPs was characterized by linear sweep voltammetry (LSV) demonstrating an enhanced electrocatalytic CO2 activity for PDADMAC-stabilized NPs. The findings of these investigations indicate that MPEAs have great potential to replace conventional, expensive noble metal electrocatalysts. KW - Multi-principal element alloys KW - Chemically Complex Materials KW - CCMat KW - Electrocatalysis KW - Carbon dioxide reduction KW - Pulsed laser ablation PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-594018 DO - https://doi.org/10.1016/j.jmrt.2023.05.143 VL - 24 SP - 9434 EP - 9440 PB - Elsevier BV AN - OPUS4-59401 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pérez Blanes, H. A1 - Ghiasi, Pouria A1 - Sandkühler, J. A1 - Yesilcicek, Yasemin A1 - Pentzien, Simone A1 - Conradi, Andrea A1 - Prinz, Carsten A1 - Al-Sabbagh, Dominik A1 - Thünemann, Andreas A1 - Özcan Sandikcioglu, Özlem A1 - Witt, Julia T1 - High CO2 reduction activity on AlCrCoCuFeNi multi-principal element alloy nanoparticle electrocatalysts prepared by means of pulsed laser ablation N2 - Noble metal-free nanoparticles (NPs) based on multi-principal element alloys (MPEAs) were synthesized using a one-step pulsed laser ablation in liquids (PLALs) method for the electrochemical reduction of CO2. Laser ablation was performed in pure water or poly-(diallyldimethylammonium chloride) (PDADMAC)-containing an aqueous solution of Al8Cr17Co17Cu8Fe17Ni33 MPEA targets. Transmission electron microscopy (TEM) measurements combined with energy dispersive X-ray (EDX) mapping were used to characterize the structure and composition of the laser-generated MPEA nanoparticles (MPEA-NPs). These results confirmed the presence of a characteristic elemental distribution of a core-shell phase structure as the predominant NP species. The electrocatalytic performance of the laser-generated MPEA-NPs was characterized by linear sweep voltammetry (LSV) demonstrating an enhanced electrocatalytic CO2 activity for PDADMAC-stabilized NPs. The findings of these investigations indicate that MPEAs have great potential to replace conventional, expensive noble metal electrocatalysts. KW - Metals and Alloys KW - Surfaces KW - Biomaterials KW - Ceramics and Composites KW - Coatings and Films PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-588218 DO - https://doi.org/10.1016/j.jmrt.2023.05.143 SN - 2238-7854 VL - 24 SP - 9434 EP - 9440 PB - Elsevier B.V. AN - OPUS4-58821 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rabin, Ira A1 - Schütz, R. A1 - Kohl, Anka A1 - Wolff, Timo A1 - Tagle, R. A1 - Pentzien, Simone A1 - Hahn, Oliver A1 - Emmel, S. T1 - Identification and classification of historical writing inks in spectroscopy: a methodological overview KW - Archaeometry KW - Non-destructive testing KW - Spectroscopy KW - Manuscript studies PY - 2012 SN - 2078-3841 VL - 3 SP - 26 EP - 30 PB - ESF CY - Strasbourg AN - OPUS4-26940 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Daminelli-Widany, Grazia A1 - Pentzien, Simone A1 - Hertwig, Andreas A1 - Krüger, Jörg T1 - Influence of film thickness on laser ablation of hydrogenated amorphous carbon films N2 - Single-pulse damage thresholds of hydrogenated amorphous carbon (a-C:H) films were measured for 8-ns laser pulses at 532-nm wavelength. Layer thicknesses from below the optical penetration depth to above the thermal diffusion length (60 nm–13 µm) were examined. After correction of the damage-threshold values for the fraction of energy effectively absorbed by the material, the damage threshold was found to increase linearly with the layer thickness, also for film thicknesses below the optical penetration depth of a-C:H. The threshold fluence reached the bulk value for a layer thickness equal to the thermal diffusion length. The thermal diffusion coefficient was obtained from fitting the experimental data. Several phenomena like graphitization, blistering, exfoliation, and ablation were observed for different fluence regimes and film thicknesses. PY - 2006 DO - https://doi.org/10.1007/s00339-005-3460-5 SN - 0340-3793 VL - 83 IS - 1 SP - 89 EP - 94 PB - Springer CY - Berlin AN - OPUS4-12022 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kautek, Wolfgang A1 - Pentzien, Simone A1 - Rudolph, Pascale A1 - Krüger, Jörg A1 - König, E. T1 - Laser interaction with coated collagen und cellulose fibre composites: fundamentals of laser cleaning of ancient parchment manuscripts and paper N2 - Laser cleaning of delicate biological composite materials such as ancient parchment manuscripts from the 15th and 16th century and printed paper from the 19th century is demonstrated with an ultraviolet excimer pulsed laser at 308 nm. Laser fluence levels must stay below the ablation and destruction threshold of the parchment or paper substrate, and have to surpass the threshold of the contaminant matter. Foreign layers to be removed must exhibit a higher optical density than the artifact substrates. Synthetic carbonaceous dirt modelled by water-soluble black crayons showed a characteristically weak featureless laser-induced plasma spectroscopy spectrum near the noise limit. It turned out that laser-induced plasma spectroscopy is of limited use in monitoring halting points (or etch-stops) because it relies on the destruction not only of the laterally inhomogenously distributed contaminant but also of pigment phases on a microscopically rough parchment substrate. Laser-induced fluorescence spectroscopy, however, promises to be a valuable non-destructive testing technique for etch-stop monitoring. KW - Laser KW - Parchment KW - Papery KW - Spectroscopy KW - Laser cleaning PY - 1998 SN - 0169-4332 SN - 1873-5584 VL - 127-129 SP - 746 EP - 754 PB - North-Holland CY - Amsterdam AN - OPUS4-11516 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kolar, J. A1 - Strlic, M. A1 - Pentzien, Simone A1 - Kautek, Wolfgang T1 - Near-UV, visible and IR pulsed laser light interaction with cellulose PY - 2000 UR - http://www.sciencedirect.com/science?_ob=PublicationURL&_tockey=%23TOC%236640%231991%23999289998%23271349%23FLP%23&_cdi=6640&_pubType=J&_auth=y&_acct=C000049503&_version=1&_urlVersion=0&_userid=963821&md5=0020a82b8d5f591abc3354091a7def13 DO - https://doi.org/10.1007/s003390050031 SN - 0947-8396 VL - 71 IS - 1 SP - 87 EP - 90 PB - Springer CY - Berlin AN - OPUS4-5991 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kautek, Wolfgang A1 - Pentzien, Simone A1 - Conradi, Andrea A1 - Krüger, Jörg A1 - Brzezinka, Klaus-Werner T1 - Pulsed-laser deposition and boron-blending of diamond-like carbon (DLC) thin films KW - Pulslaser KW - Bor KW - Dünnfilmtechnologie KW - Dünnfilm, diamantartig PY - 1996 SN - 0169-4332 SN - 1873-5584 VL - 106 SP - 158 EP - 165 PB - North-Holland CY - Amsterdam AN - OPUS4-630 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schmidt, Birgit Angelika A1 - Ziemann, M. A A1 - Pentzien, Simone A1 - Gabsch, T. A1 - Koch, W. A1 - Krüger, Jörg T1 - Technical analysis of a Central Asian wall painting detached from a Buddhist cave temple on the northern Silk Road N2 - A great number of Central Asian wall paintings, archeological materials, architectural fragments, and textiles, as well as painting fragments on silk and paper, make up the so called Turfan Collection at the Asian Art Museum in Berlin. The largest part of the collection comes from the Kucha region, a very important cultural center in the third to ninth centuries. Between 1902 and 1914, four German expeditions traveled along the northern Silk Road. During these expeditions, wall paintings were detached from their original settings in Buddhist cave complexes. This paper reports a technical study of a wall painting, existing in eight fragments, from the Buddhist cave no. 40 (Ritterhöhle). Its original painted surface is soot blackened and largely illegible. Grünwedel, leader of the first and third expeditions, described the almost complete destruction of the rediscovered temple complex and evidence of fire damage. The aim of this case study is to identify the materials used for the wall paintings. Furthermore, soot deposits as well as materials from conservation interventions were of interest. Non-invasive analyses were preferred but a limited number of samples were taken to provide more precise information on the painting technique. By employing optical and scanning electron microscopy, energy dispersive X-ray spectroscopy, micro X-ray fluorescence spectroscopy, X-ray diffraction analysis, and Raman spectroscopy, a layer sequence of earthen render, a ground layer made of gypsum, and a paint layer containing a variety of inorganic pigments were identified. KW - Wall paintings KW - Central Asia KW - Silk Road KW - Pigments KW - Microscopy PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-357297 DO - https://doi.org/10.1179/2047058414Y.0000000152 VL - 61 IS - 2 SP - 113 EP - 122 PB - Routledge Taylor & Francis Group CY - London AN - OPUS4-35729 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kautek, Wolfgang A1 - Reetz, Susanne A1 - Pentzien, Simone T1 - Template Electrodeposition of Nanowire Arrays on Gold Foils Fabricated by Pulsed-Laser Deposition KW - Nanodraht KW - Gold KW - Galvanisierung, elektrisch KW - Verbundwerkstoff KW - Laser KW - Impulslaser PY - 1995 SN - 0013-4686 SN - 1873-3859 VL - 40 IS - 10 SP - 1461 EP - 1468 PB - Elsevier Science CY - Kidlington AN - OPUS4-626 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bonse, Jörn A1 - Koter, Robert A1 - Hartelt, Manfred A1 - Spaltmann, Dirk A1 - Pentzien, Simone A1 - Höhm, S. A1 - Rosenfeld, A. A1 - Krüger, Jörg T1 - Tribological performance of femtosecond laser-induced periodic surface structures on titanium and a high toughness bearing steel N2 - Laser-induced periodic surface structures (LIPSS, ripples) were processed on steel (X30CrMoN15-1) and titanium (Ti) surfaces by irradiation in air with linear polarized femtosecond laser pulses with a pulse duration of 30 fs at 790 nm wavelength. For the processing of large LIPSS covered surface areas (5 mm × 5 mm), the laser fluence and the spatial spot overlap were optimized in a sample-scanning geometry. The laser-processed surfaces were characterized by optical microscopy (OM), white light interference microscopy (WLIM) and scanning electron microscopy (SEM). Spatial LIPSS periods between 450 and 600 nm were determined. The nanostructured surface regions were tribologically tested under reciprocal sliding conditions against a 10-mm diameter ball of hardened 100Cr6 steel. Paraffin oil and engine oil were used as lubricants for 1000 sliding cycles at 1 Hz with a normal load of 1.0 N. The corresponding wear tracks were analyzed by OM and SEM. In particular cases, the laser-generated nanostructures endured the tribological treatment. Simultaneously, a significant reduction of the friction coefficient and the wear was observed in the laser-irradiated (LIPSS-covered) areas when compared to the non-irradiated surface. The experiments reveal the potential benefit of laser surface structuring for tribological applications. KW - Laser-induced periodic surface structures (LIPSS) KW - Femtosecond laser processing KW - Tribology KW - Metals PY - 2015 DO - https://doi.org/10.1016/j.apsusc.2014.08.111 SN - 0169-4332 SN - 1873-5584 VL - 336 SP - 21 EP - 27 PB - North-Holland CY - Amsterdam AN - OPUS4-32861 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bonse, Jörn A1 - Höhm, S. A1 - Koter, Robert A1 - Hartelt, Manfred A1 - Spaltmann, Dirk A1 - Pentzien, Simone A1 - Rosenfeld, A. A1 - Krüger, Jörg T1 - Tribological performance of sub-100-nm femtosecond laser-induced periodic surface structures on titanium N2 - Sub-100-nm laser-induced periodic surface structures (LIPSS) were processed on bulk titanium (Ti) surfaces by femtosecond laser pulse irradiation in air (30 fs pulse duration, 790 nm wavelength). The laser peak fluence, the spatial spot overlap, and the number of overscans were optimized in a sample-scanning geometry in order to obtain large surface areas (5 mm × 5 mm) covered homogeneously by the LIPSS. The laser-processed regions were characterized by optical microscopy (OM), white light interference microscopy (WLIM) and scanning electron microscopy (SEM). The friction coefficient of the nanostructured surfaces was tested during 1000 cycles under reciprocal sliding conditions (1 Hz, 1.0 N normal load) against a 10-mm diameter ball of hardened 100Cr6 steel, both in paraffin oil and in engine oil used as lubricants. Subsequently, the corresponding wear tracks were qualified by OM, SEM, and energy dispersive X-ray analyses (EDX). The results of the tribological tests are discussed and compared to that obtained for near wavelength-sized fs-LIPSS, processed under somewhat different irradiation conditions. Some constraints for a beneficial effect of LIPSS on the tribological performance are provided. KW - Femtosecond laser ablation KW - Laser-induced periodic surface structures, LIPSS KW - Friction KW - Wear KW - Nanostructures KW - Surface functionalization PY - 2016 UR - http://www.sciencedirect.com/science/article/pii/S0169433215026987 DO - https://doi.org/10.1016/j.apsusc.2015.11.019 SN - 0169-4332 SN - 1873-5584 VL - 374 SP - 190 EP - 196 PB - Elsevier B.V. CY - Amsterdam, Netherlands AN - OPUS4-35937 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -