TY - JOUR A1 - Goller, Sebastian M. A1 - Schartel, Bernhard A1 - Krüger, Simone T1 - Block it and rock it: Smoke suppressants that form a protective layer in PA 6.6 N2 - To ensure fire safety, polymers are filled with flame retardants and smoke suppressants. To meet the highest requirements, it is essential to understand the decomposition of those polymeric materials. This study reveals interactions between polymer, smoke suppressants, and flame retardants, and discusses their impact on the materials’ flame retardancy, smoke emission, smoke toxicity, and particle emission in conventional loadings to provide deeper general understanding. Low melting oxide glass, melem, spherical silica, sepiolite, melamine polyphosphate, and boehmite in an aluminum diethylphosphinate flame-retarded polyamide 6.6 were investigated. All smoke suppressants improve the protective layer and act as an adjuvant. Silica and melem performed best under forced flaming conditions. Spherical silica reduces the peak of heat release rate by 39% and the total heat evolved by 14%, whereas 10 wt% melem lowers the total smoke production by 41%. Melem alters the mode of action of aluminum diethylphosphinate from gas to more condensed phase activity. This change reduces flame inhibition and hence smoke toxicity, but further improves the protective layer due to charring reactions in the decomposition mechanism. In addition, the sizes of the smoke particles decrease because of the prolonged time in the pyrolytic zone. This study highlights that interactions between polymer, flame retardants, and smoke suppressants can significantly determine the smoking and burning behavior. KW - Smoke suppressant KW - Flame retardancy KW - Aluminum diethylphosphinate KW - Smoke KW - Polyamide 6.6 PY - 2024 DO - https://doi.org/10.1177/07349041231220250 SN - 0734-9041 VL - 42 IS - 2 SP - 117 EP - 141 PB - SAGE Publications AN - OPUS4-59533 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Goller, Sebastian M. A1 - Schartel, Bernhard A1 - Krüger, Simone T1 - Phosphorus features halogen –calcium hypophosphite replaces antimony trioxide, reduces smoke, and improves flame retardancy N2 - Replacing antimony trioxide (ATO) in flame retardant formulations is an urgent task due to its toxicity. There are indications that calcium hypophosphite (CaP) may be a promising replacement. This study investigates the decomposition, fire behavior, and smoke release of brominated flame-retarded acrylonitrile butadiene styrene (ABS) under various fire scenarios like ignition, developing fire and smoldering, while replacing ATO with CaP and CaP/talc. Adding 4 wt.-% of talc to CaP formulations showed beneficial effects on flammability due to changes in the viscosity and barrier properties. Synergism between 8 wt.-% talc and CaP improved the protective layer in the developing fire scenario, resulting in a ∼60 % decrease in the peak of heat release rate and reduction of ∼21 % in total smoke production (ref. ABS+Br+ATO). With a conventional index of toxicity (CIT) of below 0.75, ABS+Br+CaP passes the highest requirements according to EN 45545-2. Overall, the CaP/talc materials improve flame retardancy, show less smoke emission under forced flaming conditions, and prevent chronic intoxication and environmental pollution through smoke particles contaminated with antimony. KW - Smoke KW - Flame retardancy KW - Acrylonitrile butadiene styrene KW - Calcium hypophosphite KW - Antimony trioxide PY - 2024 DO - https://doi.org/10.1016/j.tca.2024.179764 SN - 0040-6031 VL - 737 SP - 1 EP - 9 PB - Elsevier Ltd. AN - OPUS4-60063 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rappsilber, Tim A1 - Yusfi, Nawar A1 - Krüger, Simone A1 - Hahn, S.-K. A1 - Fellinger, Tim-Patrick A1 - Krug von Nidda, Jonas A1 - Tschirschwitz, Rico T1 - Meta-analysis of heat release and smoke gas emission during thermal runaway of lithium-ion batteries N2 - Herein a meta-analysis of 76 experimental research papers from 2000 to 2021 is given about possible effects on the thermal runaway of lithium-ion battery cells. Data on the hazards of gas emissions and released heat are related to each other and differentiated by cell properties such as, cell geometry, cathode type or state of charge. Quantitative information on the total heat release in the range of 2.0–112.0 kJ Wh−1, the peak heat release rate in the range of 0.006–2.8 kW Wh−1and the smoke gas emission were extracted, normalized in terms of cell energy (Wh), combined in a data library and compared graphically. The total amount of gas emitted (3–48 mmol Wh−1) as well as the released amount of carbon monoxide (1–161 mg Wh−1) and hydrogen fluoride (2–197 mg Wh−1) were investigated as a function of the state of charge and cell geometry. The analysis reveals that the measured values are significantly influenced by the types of calorimeters and smoke gas analyzers used as well as by the type of thermal runaway trigger. This meta-analysis can serve as an important basis for any risk assessment of lithium-ion batteries. KW - Lithium-ion battery KW - Thermal runaway KW - Cathode active material KW - Heat release KW - Smoke gas emission PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-568071 DO - https://doi.org/10.1016/j.est.2022.106579 SN - 2352-152X VL - 60 SP - 1 EP - 15 PB - Elsevier CY - Amsterdam AN - OPUS4-56807 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Goller, Sebastian M. A1 - Krüger, Simone A1 - Schartel, Bernhard T1 - No business as usual: The effect of smoke suppressants commonly used in the flame retardant PA6.6 on smoke and fire properties N2 - As most of polymeric materials are inherently flammable, flame retardants (FR) are commonly used to reduce their fire risks. Nevertheless, these flame retardant materials are often detrimental to smoke parameters like specific optical density or smoke toxicity. The influence of several smoke suppressants (SP)-zinc stannate, zinc phosphate, titanium oxide and hydrotalcite-were investigated with respect to flame retardancy, smoke emission, particle emission and smoke toxicity in a diethyl aluminum phosphinate (AlPi) flame retardant polyamide 6.6 (PA6.6). It was shown that the interaction between SP, FR and polymer is crucial for smoke and fire properties and can change the mode of action of the FR as well the decomposition mechanism of the polymer. Small amounts of SP show less effect on forced flaming behavior and the optical density, but they can influence flammability and the particle size distribution of the soot particles. The flame retardancy was significantly enhanced by 5 wt.-% zinc stannate in PA6.6 under forced flaming conditions. The charring mechanism was improved, and the mode of action of AlPi switched from the gas to the condensed phase. This resulted of in a reduced PHRR and TSP and an increase in residue yield. The smoke toxicity and optical density were reduced in the smoke density chamber as well. The smoke particles shifted to smaller sizes as the time in the pyrolytic zone increased. The formation of a dense char is assumed to be the key factor to enhance smoke suppression and flame retardancy properties. KW - Polyamide 6.6 KW - Smoke suppression KW - Flame retardancy KW - Zinc stannate KW - Smoke density PY - 2023 DO - https://doi.org/10.1016/j.polymdegradstab.2023.110276 SN - 0141-3910 VL - 209 PB - Elsevier Ltd. AN - OPUS4-56981 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Morys, Michael A1 - Häßler, Dustin A1 - Krüger, Simone A1 - Schartel, Bernhard A1 - Hothan, Sascha T1 - Beyond the standard time-temperature curve: Assessment of intumescent coatings under standard and deviant temperature curves N2 - Nowadays there are intumescent coatings available for diverse applications. There is no established assessment of their protection performance besides the standard time-temperature curve, but natural fire scenarios often play an important role. A reliable straightforward performance-based assessment is presented. The effective thermal conductivity per thickness is calculated based on intermediate-scale fire tests. The optimum thermal insulation, the time to reach it, and the time until contingent failure of the coating are used for an assessment independent of the heating curve. The procedure was conducted on four different commercially intumescent coatings for steel construction, one solvent-based, one waterborne, one epoxy-based, and a bandage impregnated with a waterborne coating. The performance was studied under four different but similar shaped heating curves with different maximum temperatures (standard time-temperature curve, hydrocarbon curve and two self-designed curves with reduced temperature). The thermal protection performance is crucially affected by the residue morphology. Therefore, a comprehensive morphology analysis, including micro-computed tomography and scanning electron microscopy, was conducted on small-scale residues (7.5 x 7.5 cm2). Two different types of inner structures and the residue surface after different heat exposures were discussed in terms of their influence on thermal protection performance. KW - Intumescence KW - Coating KW - Computed tomography KW - Small scale KW - Heating curves KW - Residue morphology PY - 2020 DO - https://doi.org/10.1016/j.firesaf.2020.102951 SN - 0379-7112 VL - 112 SP - 102951 PB - Elsevier Ltd. AN - OPUS4-50334 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wosniok, Aleksander A1 - Skoczowsky, Danilo A1 - Schukar, Marcus A1 - Pötzsch, Sina A1 - Pötschke, Samuel A1 - Krüger, Simone T1 - Fiber optic sensors for high-temperature measurements on composite tanks in fire N2 - For the purpose of increasing payload and reduce freight cost, lightweight composite tank containers used for Transportation have been progressively developed during the last years. Compared to conventionally produced cylindrical steel tanks, the fiber-reinforced solutions allow greater flexibility in the tank design. Despite a number of further material-related benefits of fiber-reinforced composites as non-conductive and non-magnetic behavior as well as corrosion resistance and high strength, the optimization of their thermal degradation properties during combustion is still a challenge. To improve the fire performance of lightweight composite containers, special intumescent fire protection coatings can be applied onto the outside tank surface. This paper presents fire tests on glass-fiber-reinforced plastic transport tanks with complex geometries sheltered with different surface-applied fire protection systems. To evaluate the fire resistance of the tank structures, a fiber optic monitoring system was developed. This system is based on distributed temperature measurements using high-Resolution optical backscatter reflectometry and pointwise reference measurements using fiber Bragg gratings. Thereby, all the fiber optic sensors were directly integrated in the composite layer structure of the tanks. The focus of the presented work is on the demonstration of capability of fiber optic monitoring system in such high-temperature application. Moreover, the fiber optic measurements provide new insights into the efficiency of intumescent coating applied for fire protection of fiber-reinforced plastic transport tanks. KW - Fire resistance KW - Composite material KW - Glass-fiber-reinforced plastic transport tank KW - Distributed fiber optic sensing KW - Optical backscatter reflectometry KW - Fiber optic sensor PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-481972 DO - https://doi.org/10.1007/s13349-019-00338-7 SN - 2190-5452 SN - 2190-5479 SP - 1 EP - 8 PB - Springer Nature AN - OPUS4-48197 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Häßler, Mai A1 - Häßler, Dustin A1 - Hothan, Sascha A1 - Krüger, Simone T1 - Fire tests of steel tension rod systems with intumescent coating N2 - Purpose – The purpose of this paper is to investigate the performance of intumescent coating on tension rod systems and their components. Steel tension rod systems consist of tension rods, fork end connectors and associated intersection or gusset plates. In case of fire, beside the tension rods themselves, the connection parts require appropriate fire protection. Intumescent fire protection coatings prevent a rapid heating of the steel and help secure the structural load-carrying capacity. Because the connection components of tension rod systems feature surface curvature and a complex geometry, high demand is placed on the intumescence and thermal protection performance of the coatings. Design/methodology/approach – In this paper, experimental studies were carried out for steel tension rod systems with intumescent coating. The examined aspects include the foaming and cracking behaviour, the influence of different dry film thicknesses, the heating rate of the steel connecting parts in comparison to the tension rods, and the mounting orientation of the tension rods together with their fork end connectors. Findings – The results show that a decrease in surface curvature and/or an increase inmass concentration of the steel components leads to a lower heating rate of the steel. Moreover, the performance of the intumescent coating on tension rod systems is influenced by themounting orientation of the steel components. Originality/value – The findings based on fire tests contribute to a better understanding of the intumescent coating performance on connection components of tension rod systems. This subject has not been extensively studied yet. KW - Steel KW - Fire test KW - Intumescent coating KW - Reactive fire protection system KW - Tension rod system PY - 2019 DO - https://doi.org/10.1108/JSFE-01-2019-0005 SN - 2040-2317 VL - 11 IS - 1 SP - 22 EP - 32 PB - Emerald Publishing Limited AN - OPUS4-48714 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Moustapha, M.E. A1 - Farag, Z.R. A1 - Krüger, Simone A1 - Geesi, M.H. A1 - Friedrich, J.F. T1 - Potentiometric studies on the influence of poly(vinylpyrrolidone) on the thermal degradation behavior of poly(vinyl chloride) blends N2 - The thermal degradation behavior of poly(vinyl chloride) (PVC) and poly(N-vinylpyrrolidone) (PVP) blends was investigated using potentiometric measurements of the released HCl gas during the degradation process, estimating the degree of discoloration of the degraded samples and measuring the thermal stability values (Ts) values. The influence of the PVP percentage in the blend and, moreover, the addition of commercial dibasic lead carbonate stabilizer to the blend on its thermal stability was studied. It was found that the dehydrochlorination rate of the blend was promoted by increasing the PVP concentration in the blend. KW - Poly(vinyl chloride) KW - Poly(N-vinylpyrrolidone) KW - Potentiometry PY - 2019 DO - https://doi.org/10.3139/120.111304 SN - 0025-5300 VL - 61 IS - 2 SP - 179 EP - 183 PB - Carl Hanser CY - München AN - OPUS4-47360 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Carabba, L. A1 - Masi, G. A1 - Pirskawetz, Stephan A1 - Krüger, Simone A1 - Gluth, Gregor A1 - Bignozzi, M.C. ED - Serdar, M. ED - Stirmer, N. ED - Provis, J. T1 - Thermal properties and steel corrosion in light-weight alkali-activated mortars N2 - This study aims at investigating the use of coal fly ash-based alkali activated mortars as passive fire protection system for steel structures. These systems are used to slow down the temperature rise of the steel substrate in case of fire. In addition, the protective system should guarantee the ability to prevent and/or mitigate steel corrosion phenomena. The behavior of a light-weight mortar was compared to that of a normal-weight mortar. Density and porosity were measured to better characterize the physical properties of the mortars. The degree of protection in case of fire was assessed by performing medium-scale fire tests. Acoustic emission measurements were conducted to analyze cracking phenomena during the high temperature exposure. The corrosion process was evaluated using an electrochemical approach in order to monitor the durability of the developed material. Preliminary results show that a 20 mm-thick layer of light-weight mortar is able to protect the steel substrate from reaching the critical temperature of 500 °C for 38 minutes in case of cellulosic fire. In addition, alkali activated mortars provide protection for carbon steel in presence of aggressive environment (i.e. presence of chlorides). The corrosion resistance is strictly related to the physical properties of the developed mortars. T2 - International Conference on Sustainable Materials, Systems and Structures (SMSS 2019) CY - Rovinj, Croatia DA - 20.03.2019 KW - Fire resistance KW - Steel corrosion KW - Acoustic emission KW - Alkali-activated materials PY - 2019 SN - 978-2-35158-223-7 VL - 1 SP - 125 EP - 132 PB - RILEM Publications CY - Paris AN - OPUS4-47584 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Carabba, L. A1 - Pirskawetz, Stephan A1 - Krüger, Simone A1 - Gluth, Gregor A1 - Bignozzi, M.C. T1 - Acoustic emission study of heat-induced cracking in fly ash-based alkali-activated pastes and lightweight mortars N2 - Alkali-activated fly ashes have been proposed for various applications where resistance against high temperatures is required, yet several details regarding the response of these materials to heat-exposure need to be clarified. In the present study, heat-induced cracking in fly ash-based alkali-activated pastes and lightweight mortars was analyzed by in-situ acoustic emission (AE) detection during complete heating-cooling cycles (up to ∼1100 °C), augmented by thermogravimetry and ex-situ SEM and XRD analyses. The applicability of the lightweight mortars as passive fire protection coatings was assessed by recording temperature-time curves of mortar-coated steel plates. Cracking during heating was limited and associated exclusively with the dehydration of the materials in the temperature range ∼90–360 °C. However, samples heated to temperatures above ∼600 °C exhibited intense cracking on cooling. This was attributed to differential deformations caused by local sintering and partial melting at the glass transition temperature, and subsequent quenching on cooling. KW - Alkali-activated materials KW - Acoustic emission KW - Fire proofing KW - Heat resistance KW - Cracking PY - 2019 DO - https://doi.org/10.1016/j.cemconcomp.2019.04.013 SN - 0958-9465 SN - 1873-393X VL - 102 SP - 145 EP - 156 PB - Elsevier AN - OPUS4-47904 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rappsilber, Tim A1 - Krüger, Simone A1 - Below, Philipp T1 - Wood crib fire tests to evaluate the influence of extinguishing media and jet type on extinguishing performance at close range N2 - This paper is intended to be the first study to discuss the fire suppressing performance of the four most common extinguishing media under the same reproducible conditions. The tests were performed in bench-scale and used standardized 5A wood cribs as well as a miniature extinguishing system with a liquid flow rate of 1.4 lmin−1. The tests results present a consistent overview of the fire suppression efficacies of water, water with a foaming agent, nozzle-aspirated foam and compressed air foam. Depending on their jet types, the cooling capabilities of the extinguishing media water and water with a foaming agent were compared to the cooling capability of a full Jet of wet, general and dry foams. The results show that compressed air foam suppressed fire most effectively under the test conditions. Because of the convoluted crib structure, water and water with foaming agents used from a distance are more effective in the form of a full jet rather than a spraying jet. At close range, spraying jets multiply their effectiveness. A slight difference can be observed in the cooling performance of extinguishing foams that use foaming agents from different manufacturers. The paper establishes a link between the foaming agent's cooling capability and its wetting power by relating the results of wood crib fire tests according to DIN EN 3–7 and findings from laboratory immersion tests compliant with DIN EN 1772. KW - CAF KW - Druckluftschaum KW - Löschen KW - Krippe PY - 2019 DO - https://doi.org/10.1016/j.firesaf.2019.04.014 SN - 0379-7112 SN - 1873-7226 VL - 106 SP - 136 EP - 145 PB - Elsevier Ltd. AN - OPUS4-47996 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tschirschwitz, Rico A1 - Krentel, Daniel A1 - Kluge, Martin A1 - Askar, Enis A1 - Habib, Abdel Karim A1 - Kohlhoff, Harald A1 - Krüger, Simone A1 - Neumann, Patrick P. A1 - Rudolph, Miachael A1 - Schoppa, André A1 - Storm, Sven-Uwe A1 - Szczepaniak, Mariusz ED - Aga, Diana ED - Daugulis, Andrew ED - Li Puma, Gianluca ED - Lyberatos, Gerasimos ED - Tay, Joo Hwa ED - Lima, Éder Claudio T1 - Hazards from failure of CNG automotive cylinders in fire N2 - Compressed natural gas (CNG) is a widely used automotive fuel in a variety of countries. In case of a vehicle fire where the safety device also malfunctions, a failure of the CNG automotive cylinder could occur. Such a cylinder failure is associated with severe hazards for the surrounding environment. Firstly, a comprehensive analysis is given below, summarizing various accidents involving CNG automotive cylinders and their consequences. In an extensive experimental program, 21 CNG automotive cylinders with no safety device were tested. Of the 21, burst tests were carried out on 5 Type III and 5 Type IV cylinders. Furthermore, fire tests with 8 Type III and 3 Type IV cylinders were conducted. Apart from cylinder pressure, inner temperature and cylinder mantle temperature, the periphery consequences, such as nearfield blast pressure and fragmentation are documented. The maximum measured overpressure due to a Type III cylinder failure was p = 0.41 bar. Each traceable fragment was georeferenced. All-in-all, fragment throw distances of d > 300 m could be observed. As one key result, it can be stated that the tested Type IV CNG cylinders showed less critical failure behavior then the Type III cylinders under fire impingement. KW - CNG KW - Composite cylinder KW - Gas cylinder KW - Tank failure KW - Fragments PY - 2019 DO - https://doi.org/10.1016/j.jhazmat.2018.12.026 SN - 0304-3894 SN - 1873-3336 VL - 367 SP - 1 EP - 7 PB - Elsevier CY - New York City, New York, USA AN - OPUS4-47135 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rappsilber, Tim A1 - Krüger, Simone T1 - Design fires with mixed-material burning cribs to determine the extinguishing effects of compressed air foams N2 - This study evaluates the efficacy of compressed air foam (CAF) in comparison to common fire extinguishing media. Newly developed mixed-material burning cribs were used as a normative fire load for extinguishing tests to accurately represent the significantly elevated utilization of synthetic materials in everyday life. A series of outdoor experiments was carried out to analyze the effectiveness of the fire extinguishing medium CAF using synthetical class-A foaming agents from two different manufacturers, and compared them to water and waterfoam solution as a function of the extinguishing distance. In a second series, performed inside a fire room, the efficiency of CAF-usage in indoor fires was evaluated. Moreover, the results of the indoor test series provided information about the composition of smoke gases based on the kind of extinguishing tactic used to suppress the fire. The results showed that under the tested conditions CAF suppressed fire more effectively than both water and water with foaming agents. CAF was able to wet areas hardly accessible to other extinguishing media, and due to its various simultaneously occurring effects and its compact jet with high kinetic energy, it cooled down temperatures more efficiently than water or water-foam solution. KW - Crib KW - Compressed Air Foam KW - Design fire KW - Extinguish KW - Fire test PY - 2018 DO - https://doi.org/10.1016/j.firesaf.2018.03.004 SN - 0379-7112 SN - 1873-7226 VL - 98 SP - 3 EP - 14 PB - Elsevier Ltd. AN - OPUS4-44632 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Legall, Herbert A1 - Schwanke, Christoph A1 - Pentzien, Simone A1 - Dittmar, G. A1 - Bonse, Jörn A1 - Krüger, Jörg T1 - X-ray emission as a potential hazard during ultrashort pulse laser material processing N2 - In laser machining with ultrashort laser pulses unwanted X-ray radiation in the keV range can be generated when a critical laser intensity is exceeded. Even if the emitted X-ray dose per pulse is low, high laser repetition rates can lead to an accumulation of X-ray doses beyond exposure safety limits. For 925 fs pulse duration at a center wavelength of 1030 nm, the X-ray emission was investigated up to an intensity of 2.6 × 10^14 W/cm2. The experiments were performed in air with a thin disk laser at a repetition rate of 400 kHz. X-ray spectra and doses were measured for various planar target materials covering a wide range of the periodic table from aluminum to tungsten. Without radiation shielding, the measured radiation doses at this high repetition rate clearly exceed the regulatory limits. Estimations for an adequate radiation shielding are provided. KW - Laser-induced X-ray emission KW - Ultrashort laser material interaction KW - Femtosecond laser KW - Radiation protection PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-448431 DO - https://doi.org/10.1007/s00339-018-1828-6 SN - 0947-8396 SN - 1432-0630 VL - 124 IS - 6 SP - Article 407, 1 EP - 8 PB - Springer AN - OPUS4-44843 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Häßler, Mai A1 - Häßler, Dustin A1 - Hothan, Sascha A1 - Krüger, Simone T1 - Performance of intumescent fire protection coatings on steel tension rod systems N2 - Steel tension rod systems consist of tension rods, fork connectors and associated intersection or connecting plates. They are used for truss systems, bracings or suspensions owing to slender design and increased economic efficiency. In case of fire, beside the tension rods themselves, the connection parts require appropriate fire protection. The use of intumescent fire protection coatings prevents a rapid heating of the steel and helps to ensure the load-carrying capacity of the structures. Because the connection components of the tension rod systems feature surface curvature as well as a complex geometry, high demand is placed on the intumescence and thermal protection effectiveness of the reactive fire protection coatings. Experimental studies were carried out to investigate the performance of intumescent coatings applied to the components of tension rod systems. The examined aspects include the foaming and cracking behaviour of the intumescent coatings, the influence of different dry film thicknesses (DFT), the heating rate of the steel connecting parts in comparison to the tension rods, as well as the mounting orientation of the tension rods together with their associated fork connectors. The results show that a decrease in the surface curvature and/or an increase in the mass concentration of the steel components lead to a lower heating rate of the steel. Moreover, the performance of the intumescent coating on tension rod systems is influenced by the mounting orientation of the steel components. T2 - 10th International Conference on Structures in Fire CY - Belfast, UK DA - 06.06.2018 KW - Steel KW - Tension rod system KW - Intumescent fire protection coating KW - Reactive fire protection system KW - Real-scale fire test PY - 2018 SN - 978-1-85923-274-3 SP - 649 EP - 654 PB - Ulster University CY - Belfast AN - OPUS4-45152 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pötzsch, Sina A1 - Krüger, Simone A1 - Sklorz, Christian A1 - Borch, Jörg A1 - Hilse, Thilo A1 - Otremba, Frank T1 - The fire resistance of lightweight composite tanks depending on fire protection systems N2 - To save weight and resources lightweight tanks with complex geometries made of glass-fibre reinforced plastics (GFRP) are a promising innovation for the transportation of dangerous goods. To realise the use of polymer tanks for such applications, their fire safety must be guaranteed. This paper presents solutions to protect fibre-reinforced plastic tanks from fire. The fire resistance of six GFRP tanks with different fire protection systems was tested in an outdoor full-scale fire test facility according to the regulation stipulated in the ADR (European agreement concerning the national carriage of dangerous goods by road). All tanks feature a complex geometry and a holding capacity of 1100 litres. The fire protection systems are composed of specialised resins as well as two intumescent coatings. All systems had a protective impact. The best results were achieved by the epoxy based intumescent coating, which was able to prolong the time needed to reach 150 °C inside the tank by 20 min. The emergence of a temperature holding point inside the tank due to condensation effects was observed at temperatures around 100 °C. KW - Fire safety composite tanks PY - 2018 UR - https://www.sciencedirect.com/science/article/pii/S0379711218301644 DO - https://doi.org/10.1016/j.firesaf.2018.08.007 SN - 0379-7112 SN - 1873-7226 VL - 100 SP - 118 EP - 127 PB - Elsevier Ltd. AN - OPUS4-45697 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Carraba, L. A1 - Gluth, Gregor A1 - Pirskawetz, Stephan A1 - Krüger, Simone A1 - Bignozzi, M.C. ED - Falikman, V. ED - Realfonzo, R. ED - Coppola, L. ED - Hajek, P. ED - Riva, R. T1 - Fly ash-based lightweight geopolymer mortars for fire protection N2 - The present study aims to investigate the use of geopolymer mortars as passive fire protection system for steel structures. Coal fly ashes were used as aluminosilicate source and perlite was employed as aggregate to obtain a lightweight system. In addition, a geopolymer mortar containing quartz aggregate was produced for comparison. The geopolymer mortars were applied on stainless steel plates and exposed to both, cellulosic and hydrocarbon standard fire curves, according to ISO 834-1 and EN 1363-2, respectively. Acoustic emission measurements were conducted to analyze cracking phenomena during the high temperature exposure. The resulting temperature-time curves showed that the investigated system is effective in retarding the temperature rise of the steel plates. When the cellulosic fire curve was applied, a 20 mm [0.79 in.] thick layer of lightweight geopolymer mortar protected the steel substrate from reaching the critical temperature of 500 °C [932 °F] for at least 30 minutes, avoiding the rapid decrease of its mechanical properties and thus representing an important safety measure against accidental fires. No spalling phenomena on heating were detected; however, significant cracking was observed on cooling. KW - Alkali-activated materials KW - Geopolymers KW - Fire protection KW - Fire proofing KW - Acoustic emission PY - 2018 SN - 978-1-64195-022-0 VL - 326 SP - 26.1 EP - 26.10 PB - American Concrete Institute CY - Farmington Hills AN - OPUS4-46154 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tschirschwitz, Rico A1 - Krentel, Daniel A1 - Kluge, Martin A1 - Askar, Enis A1 - Habib, Abdel Karim A1 - Kohlhoff, Harald A1 - Krüger, Simone A1 - Neumann, Patrick P. A1 - Rudolph, Michael A1 - Schoppa, André A1 - Storm, Sven-Uwe A1 - Szczepaniak, Mariusz T1 - Experimental investigation of consequences of LPG vehicle tank failure under fire conditions N2 - In case of a vehicle fire, an installed LPG (liquefied petroleum gas) tank with a malfunctioning safety device poses severe hazards. To investigate the consequences in case of tank failure, we conducted 16 tests with toroidal shaped LPG vehicle tanks. Three tanks were used for a Hydraulic Burst Test under standard conditions. Another three tanks were equipped with a statutory safety device and were subjected to a gasoline pool fire. The safety device prevented tank failure, as intended. To generate a statistically valid dataset on tank failure, ten tanks without safety devices were exposed to a gasoline pool fire. Five tanks were filled to a level of 20 %; the re-maining five were filled to a level of 100 %. In order to gain information on the heating process, three tem-perature readings at the tank surface, and three nearby flame temperatures were recorded. At distances of l = (7; 9; 11) m to the tank, the overpressure of the shock wave induced by the tank failure and the unsteady tem-peratures were measured. All ten tanks failed within a time of t < 5 min in a BLEVE (boiling liquid expanding vapor explosion). Seven of these resulted directly in a catastrophic failure. The other three resulted in partial failure followed by catastrophic failure. A near field overpressure at a distance of l = 7 m of up to p = 0.27 bar was measured. All ten tests showed massive fragmentation of the tank mantle. In total, 50 fragments were found. These 50 fragments make-up 88.6 % of the original tank mass. Each fragment was georeferenced and weighed. Fragment throwing distances of l > 250 m occurred. For the tanks with a fill level of 20 %, the average number of fragments was twice as high as it was for the tanks that were filled completely. KW - Blast wave KW - BLEVE KW - Consequences KW - Explosion KW - LPG PY - 2018 UR - https://authors.elsevier.com/a/1XnFv_Ld32ewKu DO - https://doi.org/10.1016/j.jlp.2018.09.006 SN - 0950-4230 VL - 56 SP - 278 EP - 288 PB - Elsevier CY - Kidlington - Oxford AN - OPUS4-46238 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kirner, Sabrina V. A1 - Slachciak, Nadine A1 - Elert, Anna Maria A1 - Griepentrog, Michael A1 - Fischer, Daniel A1 - Hertwig, Andreas A1 - Sahre, Mario A1 - Dörfel, Ilona A1 - Sturm, Heinz A1 - Pentzien, Simone A1 - Koter, Robert A1 - Spaltmann, Dirk A1 - Krüger, Jörg A1 - Bonse, Jörn T1 - Tribological performance of titanium samples oxidized by fs-laser radiation, thermal heating, or electrochemical anodization N2 - Commercial grade-1 titanium samples (Ti, 99.6%) were treated using three alternative methods, (i) femtosecond laser processing, (ii) thermal heat treatment, and (iii) electrochemical anodization, respectively, resulting in the formation of differently conditioned superficial titanium oxide layers. The laser processing (i) was carried out by a Ti:sapphire laser (pulse duration 30 fs, central wavelength 790 nm, pulse repetition rate 1 kHz) in a regime of generating laser-induced periodic surface structures (LIPSS). The experimental conditions (laser fluence, spatial spot overlap) were optimized in a sample-scanning setup for the processing of several square-millimeters large surface areas covered homogeneously by these nanostructures. The differently oxidized titanium surfaces were characterized by optical microscopy, micro Raman spectroscopy, variable angle spectroscopic ellipsometry, and instrumented indentation testing. The tribological performance was characterized in the regime of mixed friction by reciprocating sliding tests against a sphere of hardened steel in fully formulated engine oil as lubricant. The specific tribological performance of the differently treated surfaces is discussed with respect to possible physical and chemical mechanisms. KW - Femtosecond laser KW - Titanium KW - Oxidation KW - Friction PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-445609 DO - https://doi.org/10.1007/s00339-018-1745-8 SN - 0947-8396 SN - 1432-0630 VL - 124 IS - 4 SP - 326, 1 EP - 10 PB - Springer-Verlag AN - OPUS4-44560 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pötzsch, Sina A1 - Timme, Sebastian A1 - Sklorz, Christian A1 - Skoczowsky, Danilo A1 - Otremba, Frank A1 - Krüger, Simone T1 - Fire protection systems for tanks made of GFRP N2 - The application of lightweight materials for tanks for transportation appears promising. Besides saving weight and therefore transportation costs, new complex geometries that depart from common cylindrical shapes of steel tanks can be manufactured. For transportation of dangerous goods, fire and explosion safety must be maintained to prevent accidents with serious consequences. In this work the fire behavior of lightweight tanks made from glass fiber reinforced plastics (GFRP) with complex geometries is investigated. Pretests on intermediate scale GFRP plates are conducted to identify suitable fire protection systems and surface treatments for composite tanks. The fire resistance is shown to be improved by addition of fire protective coatings and integrated layers. Finally, a complex rectangular GFRP tank with a holding capacity of 1100 liters is fire protected with an intumescent fire coating. The tank is filled up to 80 % with water and burned under an engulfing fully developed fire. It was shown that the intumescent layer could expand before the decomposition of the resin occurred. Furthermore, the adhesion between tank surface and coating was maintained. The structure could withstand a fire for more than 20 min. T2 - ASME International Mechanical Engineering Congress and Exposition (IMECE) 2017 CY - Tampa, Florida, USA DA - 03.11.2017 KW - Lightweight tank KW - Composites in fire KW - GFRP KW - Fire retardants KW - Intumescent layer PY - 2017 SN - 978-0-7918-5849-3 VL - 14 SP - Article UNSP V014T14A017, 1 EP - 6 PB - ASME Press AN - OPUS4-42991 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schmidt, Birgit Angelika A1 - Pentzien, Simone A1 - Conradi, Andrea A1 - Krüger, Jörg A1 - Roth, C. A1 - Beier, O. A1 - Hartmann, A. A1 - Grünler, B. T1 - Decontamination of biocidal loaded wooden artworks by means of laser and plasma processing N2 - Many wooden artworks are contaminated by DDT (dichlorodiphenyltrichloroethane) as a result of a surface treatment by means of the liquid preservative Hylotox-59©. It was used until the end of the 1980s. DDT crystal structures are formed on the wood surfaces by the "blooming" of chlorine compounds. In addition to an aesthetic disturbance, it is assumed that DDT represents a health risk. Even decades after applying, the toxins in the wood preservatives are still detectable because they are of low volatility in many wood samples. Contaminated waste wood with natural biocide ageing, gilded and wood carved elements of an old picture frame and wooden samples with paint layers were provided by the Schlossmuseum Sondershausen. Non-contact procedures using laser and plasma appear reasonable to remove the DDT crystals. During the experiments, health and safety issues for the operator have to be taken into account. The removal of DDT was evaluated employing femtosecond and nanosecond laser radiation and cold atmospheric plasma techniques with different working gases (air, nitrogen, and argon). Before laser application, a chlorine measurement representing the DDT density on the wooden surface is done by X-ray fluorescence (XRF) analysis as reference. After laser processing, the XRF analysis is used again at the same surface position to determine the depletion rate. Additionally, a documentation and characterization of the sample surface is performed before and after laser and plasma treatment using optical microscopy (OM). For plasma processing with various systems a chlorine measurement is done by gas chromatographic-mass spectrometry (GCMS) analysis. T2 - 11th Conference on Lasers in the Conservation of Artworks CY - Kraków, Poland DA - 20.09.2016 KW - Decontamination KW - DDT KW - Wooden artworks KW - Femtosecond laser KW - Cold atmospheric pressure plasma PY - 2017 SN - 978-83-231-3875-4 DO - https://doi.org/10.12775/3875-4.17 SP - 241 EP - 251 PB - NCU Press CY - Toruń AN - OPUS4-43526 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bonse, Jörn A1 - Kirner, Sabrina A1 - Koter, Robert A1 - Pentzien, Simone A1 - Spaltmann, Dirk A1 - Krüger, Jörg T1 - Femtosecond laser-induced periodic surface structures on titanium nitride coatings for tribological applications N2 - Titanium nitride (TiN) was coated on different substrate materials, namely pure titanium (Ti), titanium alloy (Ti6Al4V) and steel (100Cr6), generating 2.5 μm thick TiN layers. Using femtosecond laser pulses (30 fs, 790 nm, 1 kHz pulse repetition rate), large surface areas (5 mm × 5 mm) of laser-induced periodic surface structures (LIPSS) with sub-wavelength periods ranging between 470 nm and 600 nm were generated and characterized by optical microscopy (OM), white light interference microscopy (WLIM) and scanning electron microscopy (SEM). In tribological tests, coefficients of friction (COF) of the nanostructured surfaces were determined under reciprocating sliding conditions (1 Hz, 1.0 N normal load) against a 10-mm diameter ball of hardened 100Cr6 steel during 1000 cycles using two different lubricants, namely paraffin oil and engine oil. It turned out that the substrate material, the laser fluence and the lubricant are crucial for the tribological performance. However, friction and wear could not be significantly reduced by LIPSS on TiN layers in comparison to unstructured TiN surfaces. Finally, the resulting wear tracks on the nanostructured surfaces were investigated with respect to their morphology (OM, SEM), depth (WLIM) and chemical composition by energy dispersive X-ray spectroscopy (EDX) and, on one hand, compared with each other, on the other hand, with non-structured TiN surfaces. KW - Laser-induced periodic surface structures (LIPSS) KW - Femtosecond laser ablation KW - Titanium nitride films KW - Friction KW - Wear PY - 2017 UR - http://www.sciencedirect.com/science/article/pii/S0169433216322486 DO - https://doi.org/10.1016/j.apsusc.2016.10.132 SN - 0169-4332 SN - 1873-5584 VL - 418 IS - Part B SP - 572 EP - 579 PB - Elsevier B.V. CY - Amsterdam AN - OPUS4-40507 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Farag, Zeinab A1 - Moustapha, M. A1 - Hidde, Gundula A1 - Friedrich, Jörg A1 - Azzam, M. A1 - Krüger, Simone ED - Mital, K.L. T1 - Promotion of Adhesion of Green Flame Retardant Coatings onto Polyolefins by Depositing Ultra-Thin Plasma Polymer Films N2 - Various methods have been used for introducing fire retardant additives into polymers. Deposition of thick fire retardant coatings directly onto polymer substrates is an alternative technique. An important advantage of the coating technique is the preservation of the physical and chemical integrity of the polymer material. Moreover, the fire retardancy of the polymer materials can be achieved following their production. Suitable coating materials are inorganics, intumescent, char-forming, oxygendiluting, and cooling or radical quenching layers. The most important problem is to achieve sufficient coating thickness to withstand the direct attack of flame and to protect the polymer bulk from pyrolysis, otherwise blistering of coating, caused by emitted pyrolysis gases, is often observed. To avoid blistering of coating, the adhesion between polyolefin substrate and fire retardant coating has to be extraordinarily high. In order to achieve such a high level of adhesion, the polymer surface has to be modified with adhesion-promoting functional groups. The deposition of thin plasma polymers as adhesion-promoting layers with NH2, OH or COOH groups has been the most suited method. These functional groups are able to form covalent bonds and other interactions between the fire-resistant coating and the plasma-modified polyolefin substrate. Additionally, the plasma polymer counteracts the strong mechanical stresses in the laminate on exposure to high temperatures by its flexibility. KW - Plasma KW - Adhesion PY - 2017 SN - 978-1-119-40748-5 SN - 978-1-119-40638-9 DO - https://doi.org/10.1002/9781119407485 VL - 2 SP - 399 EP - 427 PB - Scrivener Publishing CY - Beverly, USA AN - OPUS4-47227 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schmidt, Birgit Angelika A1 - Pentzien, Simone A1 - Conradi, Andrea A1 - Krüger, Jörg T1 - Femtosecond and nanosecond laser decontaminations of biocidal-loaded wooden artworks N2 - Until the end of the 1980s many wooden artworks underwent surface treatment by liquid preservatives, e.g. Hylotox-59. DDT (dichlorodiphenyltrichloroethane) crystal structures are formed on the wooden surfaces by the "blooming" of chlorine compounds by time. In addition to an aesthetic disturbance, it is assumed that DDT represents a health risk. Therefore, the removal of DDT crystals from the surfaces is requested. Contaminated wood with natural biocide ageing, gilded and wood carved elements and wooden samples with paint layers were provided by the Schlossmuseum Sondershausen, Germany. Laser cleaning on selected surface areas on the objects was done by means of femtosecond and nanosecond laser pulses. For the same object, cleaning results using 30-fs laser pulses at 800 nm wavelength are compared to findings utilizing 10-ns laser pulses at 1064 nm wavelength. Before and after laser treatment, chlorine measurements at the same surface position were done by X-ray fluorescence analysis (XRF) as an indicator for the presence of DDT. In this way, pointwise chlorine depletion rates can be obtained for the different pulse duration regimes and wavelengths. Additionally, the object surfaces were examined using optical microscopy and multi spectral imaging analysis. T2 - EMRS Spring Meeting 2017, Symposium X “New frontiers in laser interaction: from hard coatings to smart materials" CY - Strasbourg, France DA - 22.05.2017 KW - Laser cleaning KW - Decontamination KW - Wood KW - DDT KW - Femtosecond laser PY - 2017 DO - https://doi.org/10.1007/s00339-017-1316-4 SN - 0947-8396 SN - 1432-0630 VL - 123 IS - 11 SP - Article 696, 1 EP - 9 PB - Springer AN - OPUS4-42564 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Krüger, Simone A1 - Rappsilber, Tim A1 - Raspe, Tina A1 - Despinasse, Marie-Claire A1 - Moritz, Werner A1 - Nörthemann, Kai T1 - Early fire detection: Are hydrogen sensors able to detect pyrolysis of household materials? N2 - We analysed the hydrogen generation during the smouldering of polymeric materials, which are typically used in the household, in the Smoke Density Chamber coupled to a new developed hydrogen sensor to detect early stages of fires. The results of hydrogen generation were compared with the emission of carbon monoxide and smoke during the fire scenarios. Additionally, the results were compared with parameters used in traditional commercial detection systems. In this scenario, the hydrogen sensor showed encouraging results for the detection of fires in earlier phase compared to traditional detectors. Furthermore, we tested the new developed hydrogen sensor in a real room with different fire scenarios. We have also investigated interferences, e.g. steam and cigarette smoke. The hydrogen sensor could detect hydrogen generation in the earliest stage of fire, even before CO and smoke were developed in detectable amounts. Therefore, the hydrogen sensor can be applied for early fire detection in case of pyrolysis. The sensors are quite good for detecting pyrolysis gases. But when it comes to a fast ignition other techniques are more suitable for it. The sensors are best for combination with other techniques, such as smoke detectors. T2 - 12th IAFSS Conference CY - Lund, Sweden DA - 12.6.2017 KW - Hydogen sensor KW - Smouldering KW - Detection PY - 2017 AN - OPUS4-40688 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Krüger, Simone A1 - Despinasse, Marie-Claire A1 - Raspe, Tina A1 - Nörthemann, K. A1 - Moritz, W. T1 - Early fire detection: Are hydrogen sensors able to detect pyrolysis of house hold materials? N2 - We analysed the hydrogen generation during the smouldering of polymeric materials, which are typically used in the household, in the Smoke Density Chamber coupled to a new developed hydrogen sensor to detect early stages of fires. The results of hydrogen generation were compared with the emission of carbon monoxide and smoke during the fire scenarios. Additionally, the results were compared with parameters used in traditional commercial detection systems. In this scenario, the hydrogen sensor showed encouraging results for the detection of fires in earlier phase compared to traditional detectors. Furthermore, we tested the new developed hydrogen sensor in a real room with different fire scenarios. We have also investigated interferences, e.g. steam and cigarette smoke. The hydrogen sensor could detect hydrogen generation in the earliest stage of fire, even before CO and smoke were developed in detectable amounts. Therefore, the hydrogen sensor can be applied for early fire detection in case of pyrolysis. The sensors are quite good for detecting pyrolysis gases. But when it comes to a fast ignition other techniques are more suitable for it. The sensors are best for combination with other techniques, such as smoke detectors. T2 - IAFSS 12th Symposium 2017 CY - Lund, Sweden KW - Fire chemistry KW - Hydrogen sensor PY - 2017 DO - https://doi.org/10.1016/j.firesaf.2017.04.035 SN - 0379-7112 SN - 1873-7226 VL - 91 SP - 1059 EP - 1067 PB - Elsevier AN - OPUS4-41895 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Watolla, Marie-Bernadette A1 - Gluth, Gregor A1 - Sturm, Patrick A1 - Rickard, W.D.A. A1 - Krüger, Simone A1 - Schartel, Bernhard T1 - Intumescent geopolymer-bound coatings for fire protection of steel N2 - The passive fire protection of steel structures and other load-bearing components will continue to gain importance in future years. In the present contribution, novel intumescent aluminosilicate (geopolymer-bound) composites are proposed as fire-protective coatings on steel. Steel plates coated with these materials were exposed to the standard temperature-time curve as defined in ISO 834 – 1:1999. The coatings partially foamed during curing and expanded further during thermal exposure, demonstrating their intumescent characteristic.Thermogravimetryandoscillatory rheometry determined that the intumescent behavior is attributed to a transition to a viscous state (loss factor > 1) in the temperature range of major water release, differing from conventional geopolymers. XRD and SEM images showed that the coatings had characteristics of ceramic or glass-ceramic foams after fire resistance testing, suggesting superior performance under challenging conditions. The thickness of the coatings influenced their foaming and intumescent behavior and thus the time for the coated steel plates to reach 500 °C. A number of additives were also studied with the best performance obtained from samples containing sodium tetraborate.Acoating of just 6mmwas able to delay the time it takes for a steel substrate to reach 500 °C to more than 30 minutes. KW - Geopolymers KW - Fire protection KW - Intumescence KW - Coatings KW - Fire resistance PY - 2017 UR - https://www.ceramic-science.com/articles/all-articles.html?article_id=100558 DO - https://doi.org/10.4416/JCST2017-00035 VL - 8 IS - 3 (Topical issue: Geopolymers) SP - 351 EP - 364 PB - Göller Verlag CY - Baden-Baden AN - OPUS4-42139 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Krüger, Simone A1 - Stoll, S. A1 - Roider, G. A1 - Kraus, S. A1 - Keil, W. T1 - Hydrogen cyanide in fire tests Forensic aspects N2 - The inhalationof smoke gases is awell-established cause of poisoning and leads to the death of fire victims. Carbonmonoxide(CO) and Hydrogen cyanide (HCN) are two of the main noxious gases,whereby HCN is formed by an incomplete combustion of materials containing nitrogen. These materials may be natural materials, such as wool, silk and feathers or synthetic plastics, such as polyacrylonitrile (PAN), polyamide and polyurethane. These materials are very common in modern household furnishings; therefore, notonlyCObutalsoHCN can be produced during home fires. Up tonowonly a fewstudieshave been carried out on the generation of HCN as the fire proceeds, e. g. by Crewe et al. The data from such analyses are useful for forensic purposes. This enables the possibility to more accurately assess the events at the fire location, the Situation in which the fire victims are found as well as the cause of death. One way to analyze the gas composition of smoke is to perform bench scale fire tests, where various fire scenarios can be simulated on a smaller scale (e. g. using a smoke density chamber). The results from such experiments were compared with the results obtained in an enclosed room fire test. KW - Fire test KW - Hydrogen cyanide KW - Forensic KW - Carbon monoxide KW - Smoke inhalation injury KW - Polyurethane KW - Fires KW - Toxicity PY - 2016 DO - https://doi.org/10.1007/s00194-016-0090-5 SN - 0937-9819 VL - 26 IS - 3 SP - 184 EP - 188 PB - Springer Verlag CY - New York, NY, USA AN - OPUS4-36671 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Krüger, Simone A1 - Friedrich, Jörg A1 - Hidde, Gundula A1 - Farag, Zeinab R. A1 - Moustapha, Moustapha E. A1 - Azzam, Maged M. T1 - Promotion of adhesion of green flame retardant coatings onto polyolefins by depositing ultra-thin plasma polymer films: A critical review N2 - Various methods have been used for introducing fire retardant additives into polymers. Deposition of thick fire retardant coatings directly onto polymer substrates is an alternative technique. An important Advantage of the coating technique is the preservation of the physical and chemical integrity of the polymer material. Moreover, the fire retardancy of the polymer materials can be achieved following their production. Suitable coating materials are inorganics, intumescent, char-forming, oxygendiluting, and cooling or radical quenching layers. The most important problem is to achieve sufficient coating thickness to withstand the direct attack of flame and to protect the polymer bulk from pyrolysis, otherwise blistering of coating, caused by emitted pyrolysis gases, is often observed. To avoid blistering of coating, the adhesion between polyolefin Substrate and fire retardant coating has to be extraordinarily high. In order to achieve such a high level of adhesion, the polymer surface has to be modified with adhesion-promoting functional groups. The deposition of thin plasma polymers as adhesion-promoting layers with NH2, OH or COOH groups has been the most suited method. These functional groups are able to form covalent bonds and other interactions between the fire-resistant coating and the plasma-modified polyolefin substrate. Additionally, the plasma polymer counteracts the strong mechanical stresses in the laminate on exposure to high temperatures by its flexibility. The thick fire retardant coatings were chosen based on “green” ecological aspects to avoid flame-initiated emission of toxic or corrosive gases and remains of toxic char. KW - Flame retardant KW - Adhesion KW - Coating PY - 2016 DO - https://doi.org/10.7569/RAA.2016.097314 SN - 2168-0965 SN - 2168-0973 VL - 4 IS - 4 SP - 417 EP - 447 PB - Scrivener Publishing LLC AN - OPUS4-48164 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schmidt, Birgit Angelika A1 - Ziemann, M. A A1 - Pentzien, Simone A1 - Gabsch, T. A1 - Koch, W. A1 - Krüger, Jörg T1 - Technical analysis of a Central Asian wall painting detached from a Buddhist cave temple on the northern Silk Road N2 - A great number of Central Asian wall paintings, archeological materials, architectural fragments, and textiles, as well as painting fragments on silk and paper, make up the so called Turfan Collection at the Asian Art Museum in Berlin. The largest part of the collection comes from the Kucha region, a very important cultural center in the third to ninth centuries. Between 1902 and 1914, four German expeditions traveled along the northern Silk Road. During these expeditions, wall paintings were detached from their original settings in Buddhist cave complexes. This paper reports a technical study of a wall painting, existing in eight fragments, from the Buddhist cave no. 40 (Ritterhöhle). Its original painted surface is soot blackened and largely illegible. Grünwedel, leader of the first and third expeditions, described the almost complete destruction of the rediscovered temple complex and evidence of fire damage. The aim of this case study is to identify the materials used for the wall paintings. Furthermore, soot deposits as well as materials from conservation interventions were of interest. Non-invasive analyses were preferred but a limited number of samples were taken to provide more precise information on the painting technique. By employing optical and scanning electron microscopy, energy dispersive X-ray spectroscopy, micro X-ray fluorescence spectroscopy, X-ray diffraction analysis, and Raman spectroscopy, a layer sequence of earthen render, a ground layer made of gypsum, and a paint layer containing a variety of inorganic pigments were identified. KW - Wall paintings KW - Central Asia KW - Silk Road KW - Pigments KW - Microscopy PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-357297 DO - https://doi.org/10.1179/2047058414Y.0000000152 VL - 61 IS - 2 SP - 113 EP - 122 PB - Routledge Taylor & Francis Group CY - London AN - OPUS4-35729 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Farag, Zeinab Ramadan A1 - Friedrich, Jörg Florian A1 - Krüger, Simone A1 - Hidde, Gundula A1 - Moustapha, M. E. T1 - Adhesion promotion of thick polyphosphate-poly(allylamine) films onto polyolefin substrates by plasma polymers N2 - The adhesion of thick poly(allylamine)-polyphosphate layers (1 µm) deposited by the wet-chemical layer-by-layer technique (LbL) onto polyethylene or polystyrene (each 100 µm) was very low. To promote the adhesion of these LbL layers the polyolefin substrates were oxidized at the surface by short exposure to the oxygen plasma (2 or 5 s) and subsequently coated with an interlayer of plasma-deposited poly(allylamine) or poly(allyl alcohol) (100 nm). The plasma polymer interlayers have improved strongly the adhesion between polyolefin substrates and polyphosphate coatings. Such phosphate coatings are interesting for life sciences (nucleotide formation) but also for fire retardancy in combination with N-rich compounds such as melamine. The intention was to prefer chemical and hydrogen bonds for adhesion promoting because of their high binding energy. Therefore, the introduced oxygen-containing groups at the polyolefin surface could interact with the OH or NH2 groups of the adhesion-promoting plasma polymer interlayer. These groups were also able to interact strongly with the poly(allylamine)-polyphosphate topcoating. The coated polyolefins were investigated using Fourier Transform Infrared Spectroscopy in Attenuated Total Reflectance mode (FTIR-ATR), X-ray Photoelectron Spectroscopy (XPS), Thermo-Gravimetric Analyses (TGA) and Atomic Force Spectroscopy (AFM) and 90° peel test. KW - Plasma-polymerized poly(allylamine) KW - Adhesion KW - Layer-by-layer deposition KW - Plasma polymerization PY - 2016 UR - http://www.tandfonline.com/doi/abs/10.1080/01694243.2015.1095626 DO - https://doi.org/10.1080/01694243.2015.1095626 SN - 1648-4142 VL - 30 IS - 3 SP - 231 EP - 246 PB - Taylor & Francis AN - OPUS4-35885 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bonse, Jörn A1 - Höhm, S. A1 - Koter, Robert A1 - Hartelt, Manfred A1 - Spaltmann, Dirk A1 - Pentzien, Simone A1 - Rosenfeld, A. A1 - Krüger, Jörg T1 - Tribological performance of sub-100-nm femtosecond laser-induced periodic surface structures on titanium N2 - Sub-100-nm laser-induced periodic surface structures (LIPSS) were processed on bulk titanium (Ti) surfaces by femtosecond laser pulse irradiation in air (30 fs pulse duration, 790 nm wavelength). The laser peak fluence, the spatial spot overlap, and the number of overscans were optimized in a sample-scanning geometry in order to obtain large surface areas (5 mm × 5 mm) covered homogeneously by the LIPSS. The laser-processed regions were characterized by optical microscopy (OM), white light interference microscopy (WLIM) and scanning electron microscopy (SEM). The friction coefficient of the nanostructured surfaces was tested during 1000 cycles under reciprocal sliding conditions (1 Hz, 1.0 N normal load) against a 10-mm diameter ball of hardened 100Cr6 steel, both in paraffin oil and in engine oil used as lubricants. Subsequently, the corresponding wear tracks were qualified by OM, SEM, and energy dispersive X-ray analyses (EDX). The results of the tribological tests are discussed and compared to that obtained for near wavelength-sized fs-LIPSS, processed under somewhat different irradiation conditions. Some constraints for a beneficial effect of LIPSS on the tribological performance are provided. KW - Femtosecond laser ablation KW - Laser-induced periodic surface structures, LIPSS KW - Friction KW - Wear KW - Nanostructures KW - Surface functionalization PY - 2016 UR - http://www.sciencedirect.com/science/article/pii/S0169433215026987 DO - https://doi.org/10.1016/j.apsusc.2015.11.019 SN - 0169-4332 SN - 1873-5584 VL - 374 SP - 190 EP - 196 PB - Elsevier B.V. CY - Amsterdam, Netherlands AN - OPUS4-35937 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Krüger, Simone A1 - Hofmann-Böllinghaus, Anja A1 - Berger, Anka A1 - Gude, Nicolas T1 - Investigation of smoke gases and temperatures during car fire – large-scale and small-scale tests and numerical investigations N2 - The hazards for passengers during vehicle fires result from the increasing temperature and the emitted smoke gases. A fire was set on a car to investigate the development of temperature and of gaseous fire products in the passenger compartment. The study was based on a full-scale test with a reconstructed scene of a serious car fire. The aim of this work was to identify the conditions for self-rescuing of passengers during a car fire. A dummy, equipped with several thermocouples, was placed on the driver’s seat. Also, the smoke gases were continuously collected through a removable probe sensor corresponding to the nose of the dummy in the passenger compartment and analyzed using Fourier transform infrared spectroscopy. Additionally, several car components were investigated in the smoke density chamber (smoke emission and smoke gas composition). It was found that the toxic gases already reached hazardous levels by 5 min, while the temperatures at the dummy were at that time less than 80 °C. The toxicity of smoke gases was assessed using the fractional effective dose concept. The various experimentally parameters (temperature and smoke gas composition) were implemented into numerical simulations with fire dynamics simulator. Both the experimental data and the numerical simulations are presented and discussed. KW - Smoke gases KW - FTIR spectroscopy KW - Car fire KW - Temperatures KW - FED KW - Numerical simulations PY - 2016 DO - https://doi.org/10.1002/fam.2342 SN - 1099-1018 VL - 40 IS - 6 SP - 785 EP - 799 PB - Wiley CY - Sussex, UK AN - OPUS4-37518 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Krüger, Simone A1 - Deubel, Jan A1 - Werrel, Martin A1 - Fettig, Ina A1 - Raspe, Tina T1 - Experimental studies on the effect of fire accelerants during living room fires and detection of ignitable liquids in fire debris N2 - Reconstructing the course of a fire and performing chemical analysis of ignitable liquids in fire debris is an important tool to conduct fire investigations in suspected arson cases. Here, a total of five fire tests has been performed to investigate the effect of fire accelerants on the fire development of a room fire and to prove the capability of analytical methods. Different experimental scenarios have been realized (no accelerant, accelerant applied at different positions, and different amounts of fire accelerant). Each test room was equipped with an identical set of living room furnishing. The location and amount of the fire accelerant applied löschen varied in four of five tests. One experiment was carried out without fire accelerant. Fire quantities such as mass loss (of the entire room), gas temperatures (at several locations in the room), and heat release were determined during the experiments, and chemical-analytical studies were carried out. A headspace solid phase micro extraction procedure, using gas chromatography–mass spectrometry, was used to analyze fire debris samples to potentially detect ignitable liquids. Beside the analysis of fire debris samples, swipe soot samples were analyzed and the detectability of the fire accelerant used was demonstrated. Results show that it is possible to provide evidence of ignitable liquids in soot samples collected from walls. This allows an additional sampling strategy at potential crime scenes, besides taking fire debris samples. KW - Fire behavior KW - Room fire test KW - Heat release KW - Temperatures KW - Fire debris KW - Ignitable liquids KW - Solid phase microextraction KW - Gas chromatography PY - 2015 DO - https://doi.org/10.1002/fam.2263 SN - 0308-0501 SN - 1099-1018 VL - 39 IS - 7 SP - 636 EP - 646 PB - Heyden CY - London AN - OPUS4-34550 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mohamed, Zeinab A1 - Friedrich, Jörg Florian A1 - Krüger, Simone A1 - Farouk, M. A1 - Moustapha, M.E. T1 - Plasma deposition of adhesion-promoting polymer layers onto polypropylene for subsequent covering with thick fire retardant coatings N2 - Melamine resins were used as 50-µm-thick fire retardant coatings for polypropylene (PP). Preceding deposition, low-pressure plasma polymer films of allyl alcohol were coated onto PP to improve the adhesion between PP and melamine resin coatings. The efficiency of such fire retardant coatings was confirmed by flame tests. The plasma-deposited polymer and the dip-coated melamine resin films were characterized by Fourier transform infrared-attenuated total reflectance spectroscopy and X-ray photoelectron spectroscopy (XPS). The adhesion of coatings was measured using a 90° peel test with a doubled-faced adhesive tape. To detect the locus of failure, the peeled layer surfaces were inspected using optical microscopy and XPS. Thermal properties of PP thick melamine resin-coated films were analyzed by thermogravimetric analysis. KW - Polymer KW - Plasma KW - Polypropylene KW - Fire retardant KW - Melamine precursors KW - Plasma polymerization KW - Allyl alcohol KW - Flame retardants KW - Curing PY - 2015 DO - https://doi.org/10.1080/01694243.2015.1033878 SN - 0169-4243 SN - 1568-5616 VL - 29 IS - 14 SP - 1522 EP - 1533 PB - VNU Science Press CY - Utrecht AN - OPUS4-33112 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Despinasse, Marie-Claire A1 - Krüger, Simone T1 - First developments of a new test to evaluate the fire behavior of photovoltaic modules on roofs N2 - A new test for photovoltaic (PV) modules exposed to an external fire source on roofs is proposed, and first results are presented. This is a simplification of the standards commonly in use for testing PV modules as roofing parts, roofing components or building components. Most of the tests required different fire scenarios and the use of burning brands such as wood cribs. In our study we proposed replacing wooden burning brands with a propane burner, the output of which is close to the one that can be observed in the burning of wooden cribs 500 g and 2 kg in size. The fire behavior was assessed by measuring smoke evolution, burning drips, flaming debris, and the time to burn-through of monocrystalline, polycrystalline and amorphous silicon panels. Two different configurations of the burner were tested, with the fire source on the top of the module or under the tilted module, respectively. The fire behavior of the modules was dependent on the burner output (16 to 46 kW), but also on the construction type of the panel (glass/glass or glass/plastic sheet) and on the position of the fire source (top or bottom). These preliminary tests for further development of the procedure yielded encouraging results for the evaluation of PV panels on roofs. KW - Fire test KW - Photovoltaics KW - Roofs KW - Temperature measurements KW - Fire behavior KW - Fire engineering KW - Burn-through PY - 2015 DO - https://doi.org/10.1016/j.firesaf.2014.11.011 SN - 0379-7112 VL - 71 SP - 49 EP - 57 PB - Elsevier Ltd. CY - Kidlington, Oxford AN - OPUS4-32160 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bonse, Jörn A1 - Koter, Robert A1 - Hartelt, Manfred A1 - Spaltmann, Dirk A1 - Pentzien, Simone A1 - Höhm, S. A1 - Rosenfeld, A. A1 - Krüger, Jörg T1 - Tribological performance of femtosecond laser-induced periodic surface structures on titanium and a high toughness bearing steel N2 - Laser-induced periodic surface structures (LIPSS, ripples) were processed on steel (X30CrMoN15-1) and titanium (Ti) surfaces by irradiation in air with linear polarized femtosecond laser pulses with a pulse duration of 30 fs at 790 nm wavelength. For the processing of large LIPSS covered surface areas (5 mm × 5 mm), the laser fluence and the spatial spot overlap were optimized in a sample-scanning geometry. The laser-processed surfaces were characterized by optical microscopy (OM), white light interference microscopy (WLIM) and scanning electron microscopy (SEM). Spatial LIPSS periods between 450 and 600 nm were determined. The nanostructured surface regions were tribologically tested under reciprocal sliding conditions against a 10-mm diameter ball of hardened 100Cr6 steel. Paraffin oil and engine oil were used as lubricants for 1000 sliding cycles at 1 Hz with a normal load of 1.0 N. The corresponding wear tracks were analyzed by OM and SEM. In particular cases, the laser-generated nanostructures endured the tribological treatment. Simultaneously, a significant reduction of the friction coefficient and the wear was observed in the laser-irradiated (LIPSS-covered) areas when compared to the non-irradiated surface. The experiments reveal the potential benefit of laser surface structuring for tribological applications. KW - Laser-induced periodic surface structures (LIPSS) KW - Femtosecond laser processing KW - Tribology KW - Metals PY - 2015 DO - https://doi.org/10.1016/j.apsusc.2014.08.111 SN - 0169-4332 SN - 1873-5584 VL - 336 SP - 21 EP - 27 PB - North-Holland CY - Amsterdam AN - OPUS4-32861 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mohamed, Zeinab A1 - Friedrich, Jörg Florian A1 - Krüger, Simone T1 - Cured melamine systems as thick fire-retardant layers deposited by combination of plasma technology and dip-coating N2 - Melamine and melamine resins are widely used as fire-retardants for polymer building materials. Cured melamine systems are used in heat-sensitive items, such as furniture and window frames and sills. In this work, differently cured methylated poly(melamine-co-formaldehyde) (cmPMF) resins were used as fire-retardant coverage for poly(styrene) (PS) and poly(ethylene) (PE) building materials. Such polymer layers should have several tenths of micrometers thickness to produce sufficient fire retardancy. These thick layers were produced by dip-coating. To promote sufficient adhesion of such thick coating to the polyolefin substrates, also in the case of high temperatures occurring at fire exposure, the polymer substrates were firstly coated with a few hundred nanometer thick adhesion-promoting plasma polymer layer. Such thin plasma polymer layers were deposited by low-pressure plasma polymerization of allyl alcohol (ppAAl). It was assumed that the hydroxyl groups of ppAAl interact with the melamine resin; therefore, ppAAl was well suited as adhesion promoter for thick melamine resin coatings. Chemical structure and composition of polymer films were investigated using infrared-attenuated total reflectance and X-ray photoelectron spectroscopy (XPS). Peel strengths of coatings were measured. After peeling, the peeled polymer surfaces were also investigated using optical microscopy and XPS the layers for identification of the locus of peel front propagation. Thermal properties were analyzed using TGA (thermo-gravimetric analyses). Finally, the fire-retardant properties of such thick coated polymers were evaluated by exposure to flames. KW - Plasma polymerization KW - Dip-coating KW - Curing KW - Methylated poly(melamine-co-formaldehyde) KW - Polystyrene KW - Polyethylene KW - Flame retardancy KW - Polymer KW - Plasma KW - Melamine resin KW - Fire retardant PY - 2015 DO - https://doi.org/10.1080/01694243.2014.995911 SN - 0169-4243 SN - 1568-5616 VL - 29 IS - 9 SP - 807 EP - 820 PB - VNU Science Press CY - Utrecht AN - OPUS4-32795 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Bonse, Jörn A1 - Höhm, S. A1 - Hartelt, Manfred A1 - Spaltmann, Dirk A1 - Pentzien, Simone A1 - Koter, Robert A1 - Marschner, S. A1 - Rosenfeld, A. A1 - Krüger, Jörg ED - König, K. ED - Ostendorf, A. T1 - Femtosecond laser-induced surface nanostructures for tribological applications N2 - Laser-induced periodic surface structures (LIPSS) were generated on two types of steel (100Cr6, X30CrMoN15-1) and two types of titanium (Ti, Ti6A14V) surfaces upon irradiation with multiple linear polarized femtosecond laser pulses in air environment (pulse duration 30 fs, central wavelength 790 nm, pulse repetition rate 1 kHz, Gaussian beam shape). Teh conditions (laser fluence, spatial spot overlap) were optimized in a sample-scanning geometry for the processing of large surface areas covered homogeneously by two different types of LIPSS - either near wavelength or sub-100 nm structures. The tribological performance of the nanostructured surfaces was characterized under reciprocating sliding at 1 Hz against a ball of hardened steel using different lubricants and normal forces. After 1000 cycles the corresponding wear tracks were characterized by optical and scanning electron microscopy. For specific conditions, the wear was strongly reduced and laser-generated nanostructures endured the tribological treatment. Simultaneously, a significant reduction of the friction coefficient was observed in the laser-irradiated LIPSS-covered areas, indicating the benefit of laser surface structuring for tribological applications. The spatially Gaussian shaped beam used for the laser processing was transformed via beam shaping into a top hat distribution at the surface of the samples for optimization. The tribological performance of the laser-induced nanostructures is discussed on the basis of different physical and chemical mechanisms. PY - 2015 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-332647 SN - 978-3-11-033718-1 SN - 978-3-11-035432-4 DO - https://doi.org/10.1515/9783110354324-011 SP - Chapter 7, 141 EP - 156 PB - De Gruyter AN - OPUS4-33264 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nörthemann, K. A1 - Moritz, W. A1 - Bienge, J.-E. A1 - Müller, J. A1 - Despinasse, Marie-Claire A1 - Raspe, Tina A1 - Krüger, Simone ED - Krüll, W. T1 - Forest fire detection using hydrogen sensors N2 - Forest fires start mostly in partial combustion. In this paper we present a hydrogen sensor to defect early stages of forest fires. First indoor experiments in a smoke density chamber with wood samples, proved that the sensor produce a strong signal change when the smouldering of wood starts, already before the CO concentration, measured in FTIR spectrometry, exceeds 10 ppm. In outdoor experiments we were able to detect forest fire in a distance of 110 m. T2 - AUBE '14 - 15th International conference on automatic fire detection CY - Duisburg, Germany DA - 14.10.2014 KW - Hydrogen sensor KW - Forest KW - Fire detection KW - Smoke gases KW - FTIR KW - Rauchkammer PY - 2014 SN - 978-3-940402-02-8 VL - 1 SP - 247 EP - 254 CY - Duisburg AN - OPUS4-31949 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mohamed, Zeinab A1 - Friedrich, Jörg Florian A1 - Krüger, Simone T1 - Adhesion promotion of thick fire-retardant melamine polymer dip-coatings at polyolefin surfaces by using plasma polymers N2 - Melamine and melamine resins are widely used as fire retardants for polymer materials used in pharmaceutical, plastic, textile, rubber, and construction industry. Melamine-based flame retardants act by blowing off intumescent layers, char formation, and emission of quenching ammonia gas and diluent molecular nitrogen. Special advantages are: low cost, low smoke density and toxicity, low corrosive activity, safe handling, and environmental friendliness. Methylated poly(melamine-co-formaldehyde) (mPMF) was used as thick (≥40 µm) fire-retardant coating for plasma pretreated polymers. A combined low-pressure plasma pretreatment consisting of oxygen plasma exposure followed by deposition of thin poly(allylamine) (ppAAm) and poly(allyl alcohol) (ppAAl) plasma polymers as adhesion promoters have improved the adhesion of thick mPMF coatings strongly. Chemical structure and composition of deposited polymer films were characterized by infrared-attenuated total reflectance and X-ray photoelectron spectroscopy (XPS). After peeling, the peeled layer surfaces were also investigated for identification of the locus of failure and their topography using optical microscopy and XPS. Often the adhesion promotion was so efficient that the peeling of coating was not possible. Thermal properties of plasma polymers and dip-coating films were analyzed by thermogravimetric analysis. Significant improvement of fire-retardant properties of coated polymers was confirmed by flame tests. KW - Adhesion KW - Thick melamine layers KW - Plasma polymerization KW - Dip-coating KW - Methylated poly(melamine-co-formaldehyde) KW - Polystyrene KW - Polyethylene KW - Flame retardancy KW - Fire retardant KW - Melamine resin KW - Polymer KW - Plasma PY - 2014 DO - https://doi.org/10.1080/01694243.2014.943339 SN - 0169-4243 SN - 1568-5616 VL - 28 IS - 21 SP - 2113 EP - 2132 PB - VNU Science Press CY - Utrecht AN - OPUS4-31485 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bonse, Jörn A1 - Koter, Robert A1 - Hartelt, Manfred A1 - Spaltmann, Dirk A1 - Pentzien, Simone A1 - Höhm, S. A1 - Rosenfeld, A. A1 - Krüger, Jörg T1 - Femtosecond laser-induced periodic surface structures on steel and titanium alloy for tribological applications N2 - Laser-induced periodic surface structures (LIPSS, ripples) were generated on stainless steel (100Cr6) and titanium alloy (Ti6Al4V) surfaces upon irradiation with multiple femtosecond laser pulses (pulse duration 30 fs, central wavelength 790 nm). The experimental conditions (laser fluence, spatial spot overlap) were optimized in a sample-scanning geometry for the processing of large surface areas (5 × 5 mm²) covered homogeneously by the nanostructures. The irradiated surface regions were subjected to white light interference microscopy and scanning electron microscopy revealing spatial periods around 600 nm. The tribological performance of the nanostructured surface was characterized by reciprocal sliding against a ball of hardened steel in paraffin oil and in commercial engine oil as lubricants, followed by subsequent inspection of the wear tracks. For specific conditions, on the titanium alloy a significant reduction of the friction coefficient by a factor of more than two was observed on the laser-irradiated (LIPSS-covered) surface when compared to the non-irradiated one, indicating the potential benefit of laser surface structuring for tribological applications. PY - 2014 DO - https://doi.org/10.1007/s00339-014-8229-2 SN - 0947-8396 VL - 117 IS - 1 SP - 103 EP - 110 PB - Springer CY - Berlin AN - OPUS4-31450 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hahn, A. A1 - Zellmer, S. A1 - Riesselmann, B. A1 - Krüger, Simone A1 - Raspe, Tina A1 - Schwarz, Silke A1 - Stahn, Sebastian A1 - Urban, Klaus T1 - Carbon monoxide release curves from measurements during indoor charcoal burning: systematic research on toxic levels for humans N2 - The Federal Institute for Risk Assessment (BfR) DocCenter has received more and more reports of cases of carbon monoxide (CO) poisoning, some even with fatal outcomes after indoor use of charcoal grills. CO is odorless, colorless, non-irritant and does not produce any other warning effect perceptible to humans. The BfR and the Federal Institute for Materials Research and Testing (BAM) have completed a cooperative research project to investigate the toxic concentrations of CO that are reached when charcoal grills or open fires are used indoors. KW - Toxicity KW - Indoor charcoal burning PY - 2014 DO - https://doi.org/10.3109/15563650.2014.906213 SN - 1556-3650 VL - 52 IS - 4 SP - 351 PB - Informa Healthcare CY - Philadelphia, Pa. AN - OPUS4-34582 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Werrel, Martin A1 - Deubel, Jan A1 - Krüger, Simone A1 - Hofmann-Böllinghaus, Anja A1 - Krause, U. T1 - The calculation of the heat release rate by oxygen consumption in a controlled-atmosphere cone calorimeter N2 - The standard cone calorimeter according to ASTM E 1354 and ISO 5660 enables reaction-to-fire tests to be performed in ambient atmospheric conditions. A controlled-atmosphere chamber modifies the standard apparatus in a way that allows tests to be performed in nonambient conditions as well. The enclosed chamber is placed underneath the standard exhaust hood and does not have a closed connection to the hood. With this open arrangement, the exhaust gases are diluted by excess air drawn in from the laboratory surroundings. Heat-induced changes in the consequential dilution ratio affect the calculation of fire quantities and, when neglected, lead to deviations of up to 30% in heat release rate. The paper introduces a test protocol and equations to calculate the heat release rate taking dilution effects into account. A mathematical correction is shown that compensates for the dilution effects while avoiding extensive mechanical changes in the equipment. KW - Controlled-atmosphere cone calorimeter KW - Heat release rate KW - Oxygen consumption KW - Cone calorimeter KW - Vitiation and ventilation control KW - Excess air PY - 2014 DO - https://doi.org/10.1002/fam.2175 SN - 0308-0501 SN - 1099-1018 VL - 38 IS - 2 SP - 204 EP - 226 PB - Heyden CY - London AN - OPUS4-30317 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hofmann-Böllinghaus, Anja A1 - Knaust, Christian A1 - Krüger, Simone A1 - Raspe, Tina A1 - Deubel, Jan T1 - Detailed analysis of a smouldering fire scenario at the murder scene - experimental and numerical investigations N2 - Based on forensic evidence, a smouldering fire was observed to have occurred at a murder scene. Identification of a reasonable timeline – specifically the fire dynamics of the ignition and fire growth that occurred coincident with the death that took place – became an important focus of the criminal investigation that followed. The fire service was called when a neighbour saw a grey smoke escaping through the ventilation system of the bathrooms on the roof of the house. One flat door with elevated temperatures was found. The fire fighter who entered the flat first reported later that the flat was completely filled with smoke and all windows were closed. When the fire fighter opened the balcony door, he saw flames on the sofa that he extinguished. Then he found a body on the floor. The autopsy showed later that the victim was dead before the fire started. The police suspected that the murderer probably had deliberately set the fire to destroy evidence. One suspect had been witnessed to be in the flat approximately 2 h before the fire was detected by the neighbour. The aim of this project was to investigate how the fire most likely started and developed. KW - Fire investigation KW - Smouldering fire KW - Fire development KW - Crime KW - Numerical modelling PY - 2014 DO - https://doi.org/10.1002/fam.2222 SN - 0308-0501 SN - 1099-1018 VL - 38 IS - 8 SP - 806 EP - 816 PB - Heyden CY - London AN - OPUS4-32016 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pentzien, Simone A1 - Rabin, Ira A1 - Hahn, Oliver A1 - Krüger, Jörg A1 - Kleber, F. A1 - Hollaus, F. A1 - Diem, M. A1 - Sablatnig, R. ED - Park, J.-I. ED - Kim, J. T1 - Can Modern Technologies Defeat Nazi Censorship? N2 - Censorship of parts of written text was and is a common practice in totalitarian regimes. It is used to destroy information not approved by the political power. Recovering the censored text is of interest for historical studies of the text. This paper raises the question, whether a censored postcard from 1942 can be made legible by applying multispectral imaging in combination with laser cleaning. In the fields of art conservation (e.g. color measurements), investigation (e.g. Analysis of underdrawings in paintings), and historical document analysis, multispectral imaging techniques have been applied successfully to give visibility to information hidden to the human eye. The basic principle of laser cleaning is to transfer laser pulse energy to a contamination layer by an absorption process that leads to heating and evaporation of the layer. Partial laser cleaning of postcards is possible; dirt on the surface can be removed and the obscured pictures and writings made visible again. We applied both techniques to the postcard. The text could not be restored since the original ink seems to have suffered severe chemical damage. T2 - ACCV 2012 Workshops, 11th Asian conference on computer vision CY - Daejeon, Korea DA - 05.11.2012 KW - Laser cleaning KW - Multispectral imaging KW - Image restoration KW - Image enhancement PY - 2013 SN - 978-3-642-37483-8 SN - 0302-9743 VL - II IS - LNCS 7729 SP - 13 EP - 24 PB - Springer CY - Berlin Heidelberg AN - OPUS4-28160 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mann, Guido A1 - Pentzien, Simone A1 - Krüger, Jörg T1 - Beam diameter dependence of surface damage threshold of fused silica fibers and preforms for nanosecond laser treatment at 1064 nm wavelength N2 - Optical fibers made of fused silica are a common method of transmitting high laser pulse energies. Failure of those fibers is a significant risk. The determination of laser-induced damage thresholds (LIDT) on fiber end facets according to ISO 21254 standard is needed. In the past, single pulse nanosecond laser experiments showed an improvement of LIDT with increasing fiber core diameter for 1064 nm wavelength and a constant beam diameter of 50 µm. This paper pays particular attention to the influence of the laser beam diameter on damage resistance. All-silica fiber types (LEONI) with different core diameters (100–600 µm) were investigated using beam diameters in a range from 30 µm to 100 µm. For comparison experiments on fused silica preform material (Heraeus F300) were performed. On one hand, surface LIDT of fused silica preform material decreases significantly with increasing beam size. A model considering a random distribution of point defects explains the experimental data qualitatively. On the other hand, LIDT of fiber end facets stays constant. White light microscopy results suggest that the point defect density on fiber end facets is lower compared to the preform surface due to an excellent surface polish quality. KW - Laser-induced damage threshold KW - Nanosecond laser KW - Optical fiber KW - Fused silica KW - Spot size KW - Defect model PY - 2013 DO - https://doi.org/10.1016/j.apsusc.2013.03.088 SN - 0169-4332 SN - 1873-5584 VL - 276 SP - 312 EP - 316 PB - Elsevier B.V. CY - Amsterdam AN - OPUS4-28310 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mohamed, Zeinab A1 - Krüger, Simone A1 - Hidde, Gundula A1 - Schimanski, A. A1 - Jäger, Christian A1 - Friedrich, Jörg Florian T1 - Deposition of thick polymer or inorganic layers with flame-retardant properties by combination of plasma and spray processes N2 - Mixtures of hexamethyldisiloxane (HMDSO) and oxygen have been used for deposition of SiO2-like layers by plasma polymerization under low-pressure conditions onto polyethylene and polystyrene used as basecoat. Water glass was cast onto these 0.5 µm plasma thick siloxane-like layers with a thickness of 5 to 40 µm. The adhesion of these bilayer systems and their flame resistance were tested. The effect of different plasma parameters such as monomer/gas ratio, pressure and power input into the discharge on the deposition rate and the composition of the formed layers was studied. Characterization and chemical composition of the formed films were performed using infrared, X-ray photoelectron and solid state nuclear magnetic resonance spectroscopy. Peel strengths of composites were measured and the locus of peel front propagation was detected. Thermal properties of composites were analyzed by thermo-gravimetric analysis. Finally, the fire-retardant properties of thick coated polymers were determined by exposure to flames and the behavior of coatings on the polymers during flaming was observed visually. KW - Plasma polymerization KW - Hexamethyldisiloxane plasma polymer KW - Polystyrene KW - Polyethylene KW - Flame retardancy PY - 2013 DO - https://doi.org/10.1016/j.surfcoat.2013.04.039 SN - 0257-8972 VL - 228 SP - 266 EP - 274 PB - Elsevier B.V. CY - Lausanne AN - OPUS4-28735 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kotsifaki, D.G. A1 - Zekou, L. A1 - Pentzien, Simone A1 - Krüger, Jörg A1 - Serafetinides, A.A. ED - Saunders, D. ED - Strlic, M. ED - Korenberg, C. ED - Luxford, N. ED - Birkhölzer, K. T1 - Cleaning of artificially soiled papers by infrared and mid-infrared lasers N2 - One of the most important materials presenting and witnessing human culture is paper. The cleaning of paper is often necessary because contamination must be removed so that the fragile organic substrate can be preserved. The conventional cleaning methods are mechanical or involve the application of chemicals. These methods can damage drawings or print layers to some extent or make the original paper substrate brittle. More specifically, the use of a scalpel blade can cause damage to fibers. Chemical cleaning is difficult to perform locally, can dissolve foreign matter that then migrates into the paper substrate, or involves volatile organic compounds that can be harmful to the conservator. There is, therefore, a need for new conservation technologies aimed at the safe cleaning of paper. Lasers have proved to be an appropriate tool for cleaning as the energy dose and penetration depth at the specific point of contamination can be controlled. Additionally, if used properly, laser cleaning is not destructive to the paper. T2 - LACONA IX - Lasers in the conservation of artworks CY - London, UK DA - 07.09.2011 KW - Laser cleaning KW - Paper KW - Artificial soiling KW - Nanosecond laser KW - Microsecond laser PY - 2013 SN - 978-1-904982-87-6 SP - 219 EP - 221 PB - Archetype publications Ltd. AN - OPUS4-27956 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mohamed, Zeinab A1 - Krüger, Simone A1 - Friedrich, Jörg Florian T1 - Deposition of thick polymer or inorganic layers with flame-retardant properties by combination of plasma and spray processes N2 - Mixtures of hexamethyldisiloxane (HMDSO) and oxygen have been used for deposition of SiO2-like layers by plasma polymerization under low-pressure conditions onto polyethylene and polystyrene used as basecoat. Water glass was cast onto these 0.5 pm plasma thick siloxane-like layers with a thickness of 5 to 40 mu m. The adhesion of these bilayer systems and their flame resistance were tested. The effect of different plasma parameters such as monomer/gas ratio, pressure and power input into the discharge on the deposition rate and the composition of the formed layers was studied. Characterization and chemical composition of the formed films were performed using infrared, X-ray photoelectron and solid state nuclear magnetic resonance spectroscopy. Peel strengths of composites were measured and the locus of peel front propagation was detected. Thermal properties of composites were analyzed by thermo-gravimetric analysis. Finally, the fire-retardant properties of thick coated polymers were determined by exposure to flames and the behavior of coatings on the polymers during flaming was observed visually. T2 - 3. Magdeburger Brand- und Explosionsschutztag / vfdb-Workshop CY - Magdeburg, Germany DA - 21.03.2013 KW - Polymer KW - Plasmatechnologie KW - Analytik PY - 2013 SN - 978-3-00-041601-9 SP - 1 EP - 11 AN - OPUS4-27988 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Krüger, Simone A1 - Deubel, Jan A1 - Werrel, Martin A1 - Fettig, Ina A1 - Raspe, Tina A1 - Piechotta, Christian T1 - Experimental studies on the effect of fire accelerant during living room fires N2 - The influence of fire accelerants on the fire behavior during living room fires was experimentally investigated by performing 5 different room fire scenarios. During the tests flre-technological quantities were determined as well as chemical-analytical studies were carried out. The focus was on the detection of smoke gases and the proof of used fire accelerants. The evaluation of traceable fire accelerants and the reconstruction of the fire development are based on a precise Chemical analysis of the combustion products. In this work an innovative methodology was developed to combine available analyticai techniques to draw conclusions from solid, liquid and gaseous fire residues about the fire process. Each ofthe fire rooms was equipped with the same living room inventory. The location and amount of fire accelerant (a mixture of diesel/gasoline) differed in 4 of 5 tests. Orte room fire experiment was carried out without fire accelerant. The following fire technological characteristics were determined during the room fire experiments: mass loss (of the complete room), temperatures (at several locations in the room), heat release and smoke gas emission (measured at three different locations: in the chimney, in the fire room and at the door opening). While the smoke gases were analysed by using Fourier Transform Infrared spectroscopy, the fire residues and swipe samples (particles) were examined by Headspace-Solid Phase Microextraction- Gaschromatography-Mass spectrometry. These procedures make it possible to detect low concentrations of volatile components of the fire accelerants. The Chemical analyticai results of the fire accelerant detection are presented. T2 - Fire and materials 2013 - 13th International conference and exhibition CY - San Francisco, CA, USA DA - 28.01.2013 KW - Accelerant KW - Chemical analysis KW - Toxicity PY - 2013 SP - 729 EP - 743 PB - Interscience Communications CY - London, UK AN - OPUS4-27708 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fettig, Ina A1 - Krüger, Simone A1 - Deubel, Jan A1 - Werrel, Martin A1 - Raspe, Tina A1 - Piechotta, Christian T1 - Evaluation of a headspace solid-phase microextraction method for the analysis of ignitable liquids in fire debris N2 - The chemical analysis of fire debris represents a crucial part in fire investigations to determine the cause of a fire. A headspace solid-phase microextraction (HS-SPME) procedure for the detection of ignitable liquids in fire debris using a fiber coated with a mixture of three different sorbent materials (Divinylbenzene/Carboxen/Polydimethylsiloxane, DVB/CAR/PDMS) is described. Gasoline and diesel fuel were spiked upon a preburnt matrix (wood charcoal), extracted and concentrated with HS-SPME and then analyzed with gas chromatography/mass spectrometry (GC/MS). The experimental conditions—extraction temperature, incubation and exposure time—were optimized. To assess the applicability of the method, fire debris samples were prepared in the smoke density chamber (SDC) and a controlled-atmosphere cone calorimeter. The developed methods were successfully applied to burnt particleboard and carpet samples. The results demonstrate that the procedure that has been developed here is suitable for detecting these ignitable liquids in highly burnt debris. KW - Forensic science KW - Arson analysis KW - Fire debris KW - Ignitable liquids KW - Solid-phase microextraction KW - Smoke density chamber KW - Cone calorimeter PY - 2013 UR - http://onlinelibrary.wiley.com/doi/10.1111/1556-4029.12342/full DO - https://doi.org/10.1111/1556-4029.12342 SN - 0022-1198 SN - 1556-4029 VL - 59 IS - 3 SP - 743 EP - 749 PB - Wiley CY - Hoboken, NJ, USA AN - OPUS4-30038 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Teichmann, Bernd A1 - Krüger, Simone T1 - Systematical fire tests of PV modules - research on fire resistance, toxicology and burning behaviour N2 - At the moment more than 1 Million photovoltaic (PV) power generators are connected to the national grid in Germany1. This leads to an increasing number of estimated 300 fire accidents caused by this technology every year. Often the fire brigades deny extinguishing a burning PV generator. The fear of electric shock and poisonous heavy metals in PV solar panels refrain the firemen from doing their task. The cause of a fire of PV Systems can be the ignition of the building where the generator is mounted on, arson or technical errors in the PV modules, like strings or the inverter. T2 - Interflam 2013 - 13th International fire science & engineering conference CY - Egham, Surrey, UK DA - 24.06.2013 KW - PV modules KW - Fire resistance KW - Fire behaviour PY - 2013 SN - 978-0-9556548-9-3 SP - 105 EP - 113 PB - Interscience Communications Limited AN - OPUS4-28885 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Werrel, Martin A1 - Deubel, Jan A1 - Krüger, Simone A1 - Hofmann-Böllinghaus, Anja A1 - Antonatus, E. A1 - Krause, U. A1 - Duerler, F. T1 - Use and benefit of a controlled-atmosphere cone calorimeter N2 - A controlled-atmosphere cone calorimeter that is built by modifying the Standard apparatus with the addition of a controlled-atmosphere chamber offers a time- and cost-saving approach for reaction-to-fire testing in vitiation- and ventilation-controlled atmospheres. Due to the design of the added enclosure no mechanical changes on cone calorimeter’s Standard ductwork are required. This offers some advantages but also important limitations. The design has an open connection between the outlet of the added enclosure and the cone calorimeter’s exhaust hood. Therefore, sufficient ambient air from the laboratory surroundings is drawn into the System to introduce effects which have the potential to affect test results significantly. A procedure which is is suitable to consider physical effects of the ambient air on the calculation of the heat release rate is presented as well as initial results of an application towards toxic potency assessment. Signs for Chemical effects of the ambient air such as post reactions are shown but subject of an ongoing work. T2 - Fire and materials 2013 - 13th International conference and exhibition CY - San Francisco, CA, USA DA - 28.01.2013 KW - Controlled-atmosphere cone calorimeter KW - Heat release rate KW - Oxygen consumption KW - Smoke toxicity PY - 2013 SP - 273 EP - 286 PB - Interscience Communications CY - London, UK AN - OPUS4-27707 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Krüger, Simone A1 - Berger, Anka A1 - Krause, Ulrich T1 - Chemical-analytical investigation of fire products in intermediate storages of recycling materials N2 - Organic materials like paper, cardboard, textiles or plastics are mostly flammable. In intermediate storages for recycling products, these materials are stored in large amounts. If fire occurs in these stores, large emissions of smoke and other potentially harmful products are likely. In the present study, the gaseous products released from fires of such materials—for example, because of self-ignition—were investigated. Different fractions (paper/cardboard, textiles and plastics) were crushed at low temperatures (about 80 K) and subsequently allowed to smoulder at different temperatures using the German standard Deutsches Institut für Normung 53436. The gases produced were sampled and analysed using Fourier transform infrared spectroscopy. The chemical composition of these gases differed considerably depending on fuel type. For flammable materials without heteroatom, the gases consisted predominantly of toxic compounds like carbon monoxide and carbon dioxide. Smouldering of materials containing heteroatoms showed, in addition to carbon monoxide, carbon dioxide and water vapour, further toxic components containing the heteroatom. Materials containing chlorine produced hydrogen chloride, and materials containing nitrogen produced ammonia and hydrogen cyanide. KW - Recycling deposits KW - Fire gases KW - FTIR spectroscopy KW - Plastic wastes KW - Paper wastes KW - Textile wastes KW - Smouldering fire PY - 2012 DO - https://doi.org/10.1002/fam.1098 SN - 0308-0501 SN - 1099-1018 VL - 36 IS - 3 SP - 165 EP - 175 PB - Heyden CY - London AN - OPUS4-25791 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Eberstein, M. A1 - Geier, M. A1 - Grießmann, H. A1 - Partsch, U. A1 - Voelkel, L. A1 - Böhme, R. A1 - Pentzien, Simone A1 - Koter, Robert A1 - Mann, Guido A1 - Bonse, Jörn A1 - Krüger, Jörg T1 - Towards an industrial laser doping process for the selective emitter using phosphoric acid as dopant N2 - Different laser supported approaches have already been realized, proving the great potential of laserdoped selective emitters (LDSE). However, it is challenging to establish a low-cost process by using pulsed laser tools. So far a single-step process only leads to satisfying results utilizing cw-lasers. In this paper we have examined a two-step process to produce laser-doped selective emitters on multicrystalline textured standard silicon photovoltaic wafers (90-Ω/sq-Emitter, SiN-antireflection coating (ARC)). The precise ARC removal by near-infrared fs-laser pulses (30 fs, 800 nm), and the doping of uncoated silicon wafers by ns-laser pulses (8 ns, 532 nm) were systematically investigated. In the fs-experiment, optimum conditions for ARC removal were identified. In the nsexperiments under suitable conditions (melting regime), the phosphorous concentration underneath the wafer surface was significantly increased and the sheet resistance was reduced by nearly a factor of two. Moreover, electrical measurements on fired metallization fingers deposited on the laser processed wafers showed low contact resistances. Hence, wafer conditioning with combined fs-laser- and ns-laser-processes are expected to be a promising technology for producing selective emitters. T2 - 26th European photovoltaic solar energy conference and exhibition CY - Hamburg, Germany DA - 05.09.2011 KW - Laser processing KW - Doping KW - Selective emitter KW - Multicrystalline silicon PY - 2011 SN - 3-936338-27-2 DO - https://doi.org/10.4229/26thEUPVSEC2011-2BV.1.2 SP - 1220 EP - 1223 AN - OPUS4-24996 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Berger, Anka A1 - Krüger, Simone A1 - Krause, Ulrich ED - Kühle-Weidemeier, M. T1 - Self-ignition of deposits containing recycling materials - an underestimated phenomenon N2 - Fires on waste dumps, surface landfills, Underground stowing or storage facilities of Recycling factories may have multiple harmful effects on individuals on site and on environment. Possibly several tens of thousands of tons flare up plunging vast areas in smoke and releasing large amounts of flue gases. Experience shows that fire fighting takes days or even weeks and moreover, as long as hidden glowing nests exist fires may break out repeatedly weeks or months later. In the light of this, fire prevention is much easier to manage than extinction. It is of internst to identify the geometrical and physical conditions under which the mid-term or long-term storage of recycling materials can be performed avoiding self-ignition. Our Guideline presents a novel method developed at BAM which combines experimental tests on lab-scale with numerical simulations in Order to obtain permissible geometries of deposits and storage times at which self-ignition can be certainly avoided (Berger 2010). T2 - Waste-to-resources 2011 - 4th International Symposium MBT & MRF CY - Hannover, Germany DA - 24.05.2011 KW - Self-ignition KW - Hot storage tests KW - Numerical simulations KW - FTIR spectroscopy KW - Guideline PY - 2011 SN - 978-3-86955-747-2 SP - 1 EP - 13 PB - Cuvillier AN - OPUS4-23920 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pentzien, Simone A1 - Conradi, Andrea A1 - Krüger, Jörg T1 - The influence of paper type and state of degradation on laser cleaning of artificially soiled paper N2 - Lasers can be a supplemental tool for restorers to overcome some of the limitations of traditional dry cleaning techniques for works of art on paper. The laser working range has to be optimized allowing for safe removal of contamination and limitation of damage to the substrate. This paper addresses the influence of paper type and state of degradation on laser working range. Three types of new paper (pure cellulose, bleached pulp paper, rag paper) were degraded and characterized with respect their degree of polymerization. Laser-induced damage thresholds of new and degraded paper were determined using SEM and viscometry. Additionally, artificially soiled model samples were made using two kinds of soiling, namely pulverized charcoal and soot-blackened standard test dust. Cleaning thresholds of soiled paper samples were evaluated. A working range for all combinations of paper and soiling between 0.05 J/cm2 and 0.5 J/cm2 was found for the application of 8-ns laser pulses at 532 nm wavelength. T2 - LACONA VIII - Lasers in the Conservation of Artworks VIII CY - Sibiu, Romania DA - 21.09.2009 KW - Nanosecond laser cleaning KW - Paper KW - Ageing KW - Degree of polymerization KW - Cleaning threshold KW - Damage threshold PY - 2011 SN - 978-0-415-58073-1 SP - 59 EP - 65 PB - Taylor & Francis CY - London, UK AN - OPUS4-23634 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pentzien, Simone A1 - Conradi, Andrea A1 - Koter, Robert A1 - Krüger, Jörg ED - Engel, P. ED - Schirò, J. ED - Larsen, R. ED - Moussakova, E. ED - Kecskeméti, I. T1 - Cleaning of soiled paper model samples using short and ultrashort laser pulses N2 - Paper is one of the most important materials representing and witnessing human culture particularly as a carrier medium for text and image. As soiling hampers the reception of information, paper cleaning techniques are needed. Traditional mechanical and chemical cleaning methods are used by conservator-restorers. In some cases, a classical cleaning procedure of paper objects yields unsatisfactory results or a conventional treatment is even impossible. Especially, fragile paper objects cause problems due to mechanical instabilities. Laser cleaning as a non-contact method might be a way to overcome some of the limitations of classical cleaning techniques. Laser parameters have to be chosen to achieve removal of the soiling without influencing the artwork. Any immediate as well as long-term effects causing an irreversible change of the artwork have to be avoided. At present, most laser applications are found in stone and metal conservation, while laser treatment of complex organic materials like paper is still not fully developed for application in conservators' workshops. This contribution describes recent work of pulsed laser cleaning of soiled model samples. Pure cellulose, rag paper and wood-pulp paper were mechanically soiled with pulverized charcoal in a standardized procedure to make model samples representing essential characteristics of contaminated real-world artworks. Afterwards, model samples were cleaned using short and ultrashort laser pulses in the nanosecond and femtosecond time domain, respectively. An extensive analysis of the model samples after laser treatment using an optical microscope and a multi-spectral imaging system allows a comparison of the cleaning results obtained with both laser sources. T2 - Conference 'New Approaches to Book and Paper Conservation - Restoration' CY - Horn, Austria DA - 09.05.2011 KW - Laser cleaning KW - Ablation KW - Laser impact on surfaces KW - Paper KW - Femtosecond laser KW - Nanosecond laser PY - 2011 SN - 978-3-85028-518-6 SP - 519 EP - 532 PB - Verlag Berger, Horn CY - Vienna, Austria AN - OPUS4-23705 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pentzien, Simone A1 - Rabin, Ira A1 - Hahn, Oliver A1 - Krüger, Jörg A1 - Kleber, F. A1 - Hollaus, F. A1 - Diem, M. A1 - Sablatnig, R. T1 - Can modern technologies defeat nazi censorship? KW - Laser cleaning KW - Multispectral imaging KW - Image enhancement KW - Ancient manuscripts KW - Image restoration PY - 2010 SN - 1556-4673 VL - 2 IS - 3, Article 1 SP - 1 EP - 16 PB - Association for Computing Machinery CY - New York, NY, USA AN - OPUS4-25651 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pentzien, Simone A1 - Conradi, Andrea A1 - Koter, Robert A1 - Krüger, Jörg T1 - Cleaning of artificially soiled paper using nanosecond, picosecond and femtosecond laser pulses N2 - Cleaning of cultural assets, especially fragile organic materials like paper, is a part of the conservation process. Laser radiation as a non-contact tool offers prospects for that purpose. For the studies presented here, paper model samples were prepared using three different paper types (pure cellulose, rag paper, and wood-pulp paper). Pure cellulose serves as reference material. Rag and woodpulp paper represent essential characteristics of the basic materials of real-world artworks. The papers were mechanically soiled employing pulverized charcoal. Pure and artificially soiled paper samples were treated with laser pulses of 28 fs (800 nm wavelength) and 8–12 ns (532 nm) duration in a multi pulse approach. Additionally, the cellulose reference material was processed with 30 ps (532 nm) laser pulses. Damage and cleaning thresholds of pure and soiled paper were determined for the different laser regimes. Laser working ranges allowing for removal of contamination and avoiding permanent modification to the substrate were found. The specimens prior and after laser illumination were characterized by light-optical microscopy (OM) and scanning electron microscopy (SEM) as well as multi spectral imaging analysis. The work extends previous nanosecond laser cleaning investigations on paper into the ultra-short pulse duration domain. KW - Laser cleaning KW - Ablation KW - Laser impact on surfaces KW - Paper KW - Femtosecond laser PY - 2010 DO - https://doi.org/10.1007/s00339-010-5809-7 SN - 0947-8396 VL - 101 IS - 2 SP - 441 EP - 446 PB - Springer CY - Berlin AN - OPUS4-22155 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Krüger, Simone A1 - Berger, Anka A1 - Hofmann-Böllinghaus, Anja A1 - Krause, Ulrich T1 - Investigations of smoke gas composition during a car fire T2 - Interflam 2010 - 12th International fire science & engineering conference (Proceedings) CY - Nottingham, UK DA - 2010-07-05 KW - FTIR spectroscopy KW - Combustion KW - Smouldering KW - Fire behaviour KW - Car fire PY - 2010 SN - 978-0-9541216-6-2 N1 - Geburtsname von Hofmann-Böllinghaus, Anja: Hofmann, A. - Birth name of Hofmann-Böllinghaus, Anja: Hofmann, A. VL - 2 SP - 1755 EP - 1760 CY - London, UK AN - OPUS4-21854 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Hofmann-Böllinghaus, Anja A1 - Krüger, Simone A1 - Klippel, Alexander T1 - Experimental and numerical investigations of the burning behavior of vehicle materials small, intermediate and large scale investigations T2 - Interflam 2010 - 12th International fire science & engineering conference (Proceedings) CY - Nottingham, UK DA - 2010-07-05 PY - 2010 SN - 978-0-9541216-6-2 N1 - Geburtsname von Hofmann-Böllinghaus, Anja: Hofmann, A. - Birth name of Hofmann-Böllinghaus, Anja: Hofmann, A. VL - 2 SP - 1139 EP - 1150 CY - London, UK AN - OPUS4-21853 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Krüger, Simone A1 - Hofmann-Böllinghaus, Anja A1 - Krause, Ulrich T1 - Chemical analysis of smoke of burning upholstered bus seats T2 - 11th International symposium on fire protection CY - Leipzig, Germany DA - 2010-06-08 KW - Upholstered seats KW - FTIR spectroscopy KW - Combustion KW - Smouldering KW - Fire behaviour PY - 2010 N1 - Geburtsname von Hofmann-Böllinghaus, Anja: Hofmann, A. - Birth name of Hofmann-Böllinghaus, Anja: Hofmann, A. SP - 1 EP - 12(?) AN - OPUS4-21445 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Krüger, Simone ED - Heinz Luck, ED - Ingolf Willms, T1 - Smoke gas analysis by Fourier transform infrared spectroscopy T2 - AUBE ´09 - 14th International conference on automatic fire detection CY - Duisburg, Germany DA - 2009-09-08 KW - Smoke gase KW - FTIR KW - Polymer KW - SBI KW - Brandschacht KW - DIN tube furnace PY - 2009 SN - 978-3-940402-01-1 VL - 1 SP - 165 EP - 172 CY - Duisburg, Germany AN - OPUS4-19848 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Holle, H. A1 - Kautek, W. A1 - Pentzien, Simone A1 - Krüger, Jörg A1 - Mäder, M. A1 - Schreiner, M. T1 - Laser cleaning on historic picture postcards N2 - This contribution compares traditional cleaning and laser methods. Partial laser cleaning with a nanosecond pulse laser (wavelength of 532 nm) has proved very promising for future application in paper conservation-restoration. Traditional cleaning methods are not always sufficient or successful in surface cleaning of objects of art. Comparative studies of traditional paper cleaning methods and laser cleaning were made on several historic picture postcards printed with the chromolithography technique. PY - 2009 SN - 978-3-85028-490-5 SP - 189 EP - 206 PB - Berger Horn CY - Wien, Austria AN - OPUS4-20397 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Pentzien, Simone A1 - Conradi, Andrea A1 - Lussky, K. A1 - Engel, P. A1 - Krüger, Jörg ED - Engel, Patricia T1 - Laser cleaning of artificially soiled paper N2 - Laser cleaning for works of art on paper might be a supplemental, noncontact method to overcome some of the limitations of traditional dry cleaning techniques. Three different types of paper (pure-cellulose filter paper, rag paper, and wood-pulp paper) were mechanically soiled with pulverized charcoal in a standardized procedure to make model samples. These samples were characterized microscopically and by means of lightness measurements using a multi-spectral imaging system. A prototype laser workstation with Laser Class I conditions for the operator was used for the cleaning experiments. For 10-ns laser pulses at a wavelength of 532 nm, a set of laser parameters was established for a successful cleaning of the samples avoiding damage to the paper substrate. Single- and multi-pulse illumination conditions were tested. An extensive microscopic analysis after laser treatment of the cleaned parts of the samples provided insight into the remaining soiling on the surface and in the bulk of the paper material. PY - 2009 SN - 978-3-85028-490-5 SP - 171 EP - 188 PB - Berger Horn CY - Wien, Austria AN - OPUS4-20398 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Krüger, Simone A1 - Wachtendorf, Volker A1 - Rauth, W. A1 - Klimmasch, T. A1 - Krüger, P. T1 - Screening the weathering stability of automotive coatings by chemiluminescence N2 - Chemiluminescence (CL) is a sensitive method of investigating the thermo-oxidative stability of polymers in the early stages of degradation. Therefore, CL measurements were applied to different automotive coatings to evaluate their degradation behavior during artificial weathering. In this work, CL measurements were carried out for different automotive coatings to follow their degradation behavior during artificial weathering. The CL emission depends on sample-specific parameters like stabilizer, matrix, or hardener; experimental parameters like the oxygen partial pressure; and exposure parameters like the duration of weathering. The potential of CL could be demonstrated by classifying materials into categories of good, medium, and low degradation performance at a much earlier stage of weathering exposure than in combination with the usual visual detection of weathering effects. KW - Accelerated weathering KW - Coating KW - Chemiluminescence KW - Sensitive detection KW - Weathering PY - 2008 DO - https://doi.org/10.1007/s11998-007-9071-7 SN - 1547-0091 SN - 1935-3804 VL - 5 IS - 1 SP - 17 EP - 24 PB - Springer CY - Blue Bell, Pa. AN - OPUS4-16723 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Krüger, Simone A1 - Brademann-Jock, Kerstin A1 - Rauth, W. A1 - Klimmasch, T. A1 - Krüger, P. T1 - Analysis of weathering effects in automotive coatings using thermoluminescence N2 - Thermally stimulated luminescence (TL) can be used to detect damage in the early stages of degradation after artificial weathering, and to analyze the efficiency of stabilizers used in automotive coatings. TL is particularly suitable for this task due to its inherent high sensitivity to structural, morphological, and chemical changes in macromolecular chains. In this work, TL measurements were carried out for different automotive coatings to follow their degradation progression during artificial weathering. The TL results demonstrate high sensitivity to parameters like stabilizers, matrices, hardeners, and weathering time, and provide an opportunity to monitor the early stages of damage in polymers, which therefore reduce the time required for further outdoor weathering tests. KW - Accelerated weathering KW - Automotive coating KW - Thermoluminescence KW - Sensitive detection KW - Weathering PY - 2008 DO - https://doi.org/10.1007/s11998-007-9072-6 SN - 1547-0091 SN - 1935-3804 VL - 5 IS - 1 SP - 11 EP - 16 PB - Springer CY - Blue Bell, Pa. AN - OPUS4-16722 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Pentzien, Simone A1 - Conradi, Andrea A1 - Krüger, Jörg A1 - Wurster, R. ED - M. Castillejo, ED - P. Moreno, ED - M. Oujja, ED - R. Radvan, ED - J. Ruiz, T1 - Monitoring of the laser cleaning process of artificially soiled paper N2 - Laser cleaning of soiled paper is a challenging task due to the fact that a contamination has to be removed and a fragile organic material has to be preserved. The ejection of particles forms a significant channel for the removal of unwanted surface contaminations and can be exploited for an in-situ monitoring of the cleaning procedure. 532-nm-nanosecond single and multi pulse laser cleaning of artificially soiled Whatman© paper was performed. Particles were registered with a dust monitor. These in-situ experiments were combined with ex-situ investigations of cleaning and substrate damage thresholds by means of light and scanning electron microscopic techniques. The cleaning efficiency measured by a multi-spectral imaging system was compared to the in-situ particle monitoring. Additionally, possible color changes of the paper substrate were evaluated. T2 - LACONA VII International Conference, "Lasers in the Conservation of Artworks" CY - Madrid, Spain DA - 2007-09-17 PY - 2008 SN - 978-0-415-47596-9 SP - 345 EP - 351 PB - Taylor & Francis AN - OPUS4-17974 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Krüger, Jörg A1 - Pentzien, Simone A1 - Conradi, Andrea T1 - Cleaning of artificially soiled paper with 532-nm nanosecond laser radiation N2 - Cleaning of paper is a challenging task due to the fact that a contamination should be removed and a fragile organic original material has to be preserved. Pulsed laser cleaning of artificially soiled Whatman© filter paper samples serving as models for historical paper was performed. Different cleaning strategies employing 8-ns laser pulses at 532 nm wavelength were applied to clean paper avoiding undesired effects like discoloration (yellowing) and mechanical deterioration of the substrate. Multi shot experiments with low-energy pulses were compared with single pulse investigations utilizing high pulse energies achieving a constant energy load incident on the samples in both cases. The cleaning efficiency and possible yellowing effects were evaluated by means of a multi spectral imaging system. An extensive microscopic analysis of the cleaned parts of the samples provided insight into the remaining soiling on the surface and in the bulk of the paper material after laser treatment. As a reference, a hard and a soft eraser were used to clean the samples. KW - Laser cleaning KW - Paper KW - Colorimetry PY - 2008 DO - https://doi.org/10.1007/s00339-008-4476-4 SN - 0947-8396 VL - 92 IS - 1 SP - 179 EP - 183 PB - Springer CY - Berlin AN - OPUS4-17331 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mäder, M. A1 - Holle, H. A1 - Schreiner, M. A1 - Pentzien, Simone A1 - Krüger, Jörg A1 - Kautek, Wolfgang ED - Johann Nimmrichter, ED - Kautek, Wolfgang ED - Manfred Schreiner, T1 - Traditional and laser cleaning methods of historic picture post cards T2 - LACONA VI CY - Vienna, Austria DA - 2005-09-21 KW - Laser KW - Cleaning KW - Picture Post Card PY - 2007 SN - 978-3-540-72129-1 SN - 0930-8989 N1 - Serientitel: Springer proceedings in physics – Series title: Springer proceedings in physics IS - 116 SP - 281 EP - 286 PB - Springer CY - Berlin AN - OPUS4-16378 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lerber, K. von A1 - Strlic, M. A1 - Kolar, J. A1 - Krüger, Jörg A1 - Pentzien, Simone A1 - Kennedy, C. A1 - Wess, T. A1 - Sokhan, M. A1 - Kautek, W. ED - Johann Nimmrichter, ED - Kautek, Wolfgang ED - Manfred Schreiner, T1 - Laser cleaning of undyed silk: Indications of chemical change T2 - LACONA VI CY - Vienna, Austria DA - 2005-09-21 KW - Laser KW - Cleaning KW - Silk KW - Textiles KW - Viscometry KW - X-ray diffraction KW - SIMS PY - 2007 SN - 978-3-540-72129-1 SN - 0930-8989 N1 - Serientitel: Springer proceedings in physics – Series title: Springer proceedings in physics IS - 116 SP - 313 EP - 319 PB - Springer CY - Berlin AN - OPUS4-16379 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Krüger, Jörg A1 - Pentzien, Simone A1 - Lerber, K. von ED - Johann Nimmrichter, ED - Kautek, Wolfgang ED - Manfred Schreiner, T1 - Determination of a working range for the laser cleaning of soiled silk T2 - LACONA VI CY - Vienna, Austria DA - 2005-09-21 KW - Laser KW - Cleaning KW - Silk KW - Textiles PY - 2007 SN - 978-3-540-72129-1 SN - 0930-8989 N1 - Serientitel: Springer proceedings in physics – Series title: Springer proceedings in physics IS - 116 SP - 321 EP - 327 PB - Springer CY - Berlin AN - OPUS4-16380 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Krüger, Simone A1 - Wachtendorf, Volker A1 - Rauth, W. A1 - Klimmasch, T. A1 - Krüger, P. T1 - Screening the weathering stability of automotive coatings by chemiluminescence T2 - XXVIIIth FATIPEC Congress CY - Budapest, Hungary DA - 2006-06-12 KW - Automotive coatings KW - Weathering KW - Chemiluminescence PY - 2006 SP - 8 pages CY - Budapest AN - OPUS4-12557 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Krüger, Simone A1 - Brademann-Jock, Kerstin A1 - Wachtendorf, Volker A1 - Rauth, W. A1 - Klimmasch, T. A1 - Krüger, P. T1 - Analysis of weathering effects in automotive coatings by thermoluminescence T2 - 28th FATIPEC Congress CY - Budapest, Hungary DA - 2006-06-12 KW - Automotive coatings KW - Weathering KW - Thermoluminescence PY - 2006 SP - 1 EP - 9 CY - Budapest AN - OPUS4-12558 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Krüger, Simone A1 - Wachtendorf, Volker A1 - Brademann-Jock, Kerstin A1 - Rauth, W.. A1 - Klimmasch, Th. A1 - Krüger, P. T1 - Analysis of weathering effects in automotive coatings by thermoluminescence T2 - XXVIIIth FATIPEC Congress CY - Budapest, Hungary DA - 2006-06-12 PY - 2006 AN - OPUS4-12548 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Krüger, Simone A1 - Wachtendorf, Volker A1 - Rauth, W.. A1 - Klimmasch, Th. A1 - Krüger, P. T1 - Screening the weathering stability of automotive coatings by chemiluminescence T2 - XXVIIIth FATIPEC Congress CY - Budapest, Hungary DA - 2006-06-12 PY - 2006 AN - OPUS4-12549 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Daminelli-Widany, Grazia A1 - Pentzien, Simone A1 - Hertwig, Andreas A1 - Krüger, Jörg T1 - Influence of film thickness on laser ablation of hydrogenated amorphous carbon films N2 - Single-pulse damage thresholds of hydrogenated amorphous carbon (a-C:H) films were measured for 8-ns laser pulses at 532-nm wavelength. Layer thicknesses from below the optical penetration depth to above the thermal diffusion length (60 nm–13 µm) were examined. After correction of the damage-threshold values for the fraction of energy effectively absorbed by the material, the damage threshold was found to increase linearly with the layer thickness, also for film thicknesses below the optical penetration depth of a-C:H. The threshold fluence reached the bulk value for a layer thickness equal to the thermal diffusion length. The thermal diffusion coefficient was obtained from fitting the experimental data. Several phenomena like graphitization, blistering, exfoliation, and ablation were observed for different fluence regimes and film thicknesses. PY - 2006 DO - https://doi.org/10.1007/s00339-005-3460-5 SN - 0340-3793 VL - 83 IS - 1 SP - 89 EP - 94 PB - Springer CY - Berlin AN - OPUS4-12022 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wurster, R. A1 - Pentzien, Simone A1 - Conradi, Andrea A1 - Krüger, Jörg T1 - Characterization of laser-generated microparticles by means of a dust monitor and SEM imaging N2 - Nanosecond laser (1064 nm wavelength) cleaning of artificially soiled paper as a model sample simulating a real-world artwork was performed. During the cleaning process, the ejection of particles was monitored in situ by means of a dust monitor (8 size classes, ranging from 0.3 µm to >2 µm) and ex situ using a mini-cascade impactor (MKI, 5 stages). The cleaning result was analyzed by scanning electron microscopy (SEM) considering possible laser-induced damages to the substrate. Size distributions of emitted particles were measured depending on the processing parameters: laser fluence, F, and pulse number per spot, N. High numbers of large (>2 µm) particles were collected by the mini-cascade impactor indicating a gas dynamical liftoff process. Obviously, these particles were not affected by the laser-matter interaction. The different methods (SEM, MKI, and dust monitor) are compared with respect to their usefulness for a proper interpretation of the cleaning results. PY - 2006 DO - https://doi.org/10.1155/2006/31862 SN - 0278-6273 SN - 1476-3516 VL - 2006 IS - Article ID 31862 SP - 1 EP - 5(?) PB - Harwood Academic Publ. CY - London AN - OPUS4-14467 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Krüger, Simone A1 - Schulze, Rolf-Dieter A1 - Brademann-Jock, Kerstin A1 - Swaraj, Sufal A1 - Friedrich, Jörg Florian T1 - Characterisation of plasma polymers by thermoluminescence N2 - Thin plasma polymer films were deposited using the pulsed plasma mode. These plasma polymers should possess a more regular structure than those produced by the conventional continuous-wave (cw) mode, because of lower monomer fragmentation caused by the plasma pulses and the chemical chain propagation during the plasmaless (free!) periods. The thermoluminescence method was applied to functional groups carrying plasma polymer layers which are used in medical technology. Examples are formation of biocompatible, biosensoric and bioactive coatings or in metal polymer composites such as adhesion-promoting interlayers. In addition to the use of the conventional X-ray Photoelectron Spectroscopy for thin film characterization, the new method of thermoluminescence was applied to characterize undesired defects and structural specifics produced in the polymer films by pp or cw plasma mode. The main areas of focus were oxygen-containing groups produced by post-plasma oxygen introduction via auto-oxidation, oxidation of implemented unsaturations and trapped radical sites known as typical irregular structures in plasma polymers. KW - Plasma polymers KW - Thermoluminescence KW - Structure KW - Defects KW - Pulsed plasma KW - Continuous-wave plasma PY - 2006 DO - https://doi.org/10.1016/j.surfcoat.2005.12.003 SN - 0257-8972 VL - 201 IS - 3-4 SP - 543 EP - 552 PB - Elsevier Science CY - Lausanne AN - OPUS4-12818 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Krüger, Simone A1 - Wachtendorf, Volker A1 - Böhning, Martin A1 - Rauth, W. A1 - Klimmasch, Th. A1 - Krüger, P. A1 - Tahedl, Ch. T1 - Thermo oxidative investigations on efficiency of UV stabiliser in automotive coatings T2 - Polydays 2006 CY - Berlin, Germany DA - 2006-10-04 PY - 2006 AN - OPUS4-13448 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Krüger, Simone A1 - Goering, Harald A1 - Stark, Wolfgang A1 - Bayerl, H. A1 - Brinkmann, P. T1 - Thermo Analytical Investigations of Phenol Moulding Compound Curing - Potential for Post-Cure Optimisation T2 - 3rd International Thermoset Conference CY - Iserlohn, Germany DA - 2005-04-21 KW - Post curing KW - High pressure DSC KW - DMA KW - Reaction kinetic KW - Phenolic resin PY - 2005 SP - 219 EP - 225 PB - Fachhochschule Südwestfalen - Hochschule für Technik und Wirtschaft CY - Iserlohn AN - OPUS4-7453 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Krüger, Simone A1 - Schulze, Rolf-Dieter A1 - Brademann-Jock, Kerstin A1 - Friedrich, Jörg Florian ED - Pershin, L. T1 - Introduction of irregularities into plasma polymers by radiative and auto-oxidative processes T2 - 17th International Symposium on Plasma Chemistry (ISPC-17) CY - Toronto, Canada DA - 2005-08-07 PY - 2005 SP - 1(?) EP - 6(?) CY - Toronto AN - OPUS4-11943 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Brademann-Jock, Kerstin A1 - Krüger, Simone A1 - Wachtendorf, Volker A1 - Goering, Harald T1 - Degradation effects of automotive coatings after weathering as detected by thermoluminescence T2 - 27th FATIPEC Congress CY - Aix-en-Provence, France DA - 2004-04-19 KW - Automobillacke KW - Bewitterung KW - Thermolumineszenz KW - Automotive coatings KW - Weathering KW - Thermoluminescence PY - 2004 VL - 3 SP - 1045 EP - 1050 PB - Association Francaise des Techniciens des Peintures, Vernis,Encres CY - Aix en Provence AN - OPUS4-4054 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Krüger, Simone A1 - Brademann-Jock, Kerstin A1 - Raabe, Hans-Joachim A1 - Schulz, Ulrich A1 - Kunze, Ralf T1 - Thermoluminescence - A new method to investigate Weathering Effects of Greenhouse Coverings T2 - 2nd International Conference on Polymer Modification, Degradation and Stabilisation (MoDeSt) CY - Budapest, Hungary DA - 2002-06-30 PY - 2002 VL - 82 IS - 2 PB - Elsevier CY - Orlando, Fla. AN - OPUS4-1448 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Brademann-Jock, Kerstin A1 - Krüger, Simone A1 - Raabe, Hans-Joachim A1 - Schulz, Ulrich ED - Adler, H.-J. T1 - Thermoluminescence - a new method to investigate weathering effects of automotive coatings T2 - 26th FATIPEC Congress CY - Dresden, Germany DA - 2002-09-09 PY - 2002 SN - 3-527-30477-0 SN - 1022-1360 N1 - Serientitel: Macromolecular symposia – Series title: Macromolecular symposia IS - 187 SP - 44 PB - Wiley-VCH CY - Weinheim AN - OPUS4-1476 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Gorokhovatsky, Y.A. A1 - Krüger, Simone A1 - Brademann-Jock, Kerstin A1 - Stark, Wolfgang A1 - Temnov, Dmitri A1 - Kuvshinova, Oksana A1 - Goldade, V.A. ED - Fleming, R. J. T1 - Thermally stimulated luminescence in LDPE fibers T2 - 11th International Symposium on Electrets (ISE 11) CY - Melbourne, Australia DA - 2002-10-01 PY - 2002 SN - 0-7803-7560-2 SP - 138 EP - 140 PB - IEEE Service Center CY - Piscataway, NJ AN - OPUS4-1654 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Krüger, Simone A1 - Brademann-Jock, Kerstin A1 - Raabe, Hans-Joachim A1 - Kunze, Ralf T1 - Thermoluminescence - a new method to investigate weathering effects in polymers T2 - Polydays 2002 CY - Berlin, Germany DA - 2002-09-30 PY - 2002 AN - OPUS4-1530 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Krüger, Simone A1 - Brademann-Jock, Kerstin A1 - Raabe, Hans-Joachim A1 - Kunze, Ralf T1 - Thermoluminescence - a new method to investigate weathering effects of automotive coatings T2 - 24th Meeting "Polymer Degradation Discussion Group (PDDG) - Environmental Degradation and Stabilisation of Polymers" CY - Brighton, England, UK DA - 2001-09-12 PY - 2001 IS - C10 SP - 13 AN - OPUS4-1161 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Krüger, Simone A1 - Kunze, Ralf A1 - Brademann-Jock, Kerstin A1 - Raabe, Hans-Joachim ED - Eichhorn, K.-J. ED - Fischer, D. T1 - Thermoluminescence - A useful method to investigate the stability of PP-fleece textiles T2 - 14th European Symposium on Polymer Spectroscopy ; 14th ESOPS CY - Dresden, Germany DA - 2001-09-02 PY - 2001 SN - 3-527-30474-6 SN - 1022-1360 IS - 184 SP - 106 PB - Wiley-VCH CY - Weinheim AN - OPUS4-1159 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wachtendorf, Volker A1 - Krüger, Simone A1 - Schulz, Ulrich A1 - Trubiroha, Peter T1 - Chemiluminescence of polyethylenes as accelerated test for the efficiency of stabilisers and of the effect of recycling procedures T2 - Workshop on chemiluminescence CY - Leipzig, Germany DA - 2000-10-19 PY - 2000 SP - 1 EP - 10(?) AN - OPUS4-991 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Kautek, Wolfgang A1 - Pentzien, Simone A1 - Rudolph, Pascale A1 - Krüger, Jörg A1 - Maywald-Pitellos, C. A1 - Bansa, H. A1 - Grösswang, H. A1 - König, W. ED - Fotakis, C. T1 - Near-Ultraviolet Pulsed Laser Interaction with Contaminants and Pigments on Parchment: Spectroscopic Diagnostics for Laser Cleaning Safety T2 - 5th International Conference on Optics within Life Sciences CY - H¯erakleion, Greece DA - 1998-01-01 PY - 2000 SN - 3-540-66648-6 N1 - Serientitel: Optics within life sciences – Series title: Optics within life sciences IS - 5 SP - 100 EP - 107 PB - Springer CY - Berlin AN - OPUS4-6189 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schartel, Bernhard A1 - Wachtendorf, Volker A1 - Krüger, Simone A1 - Hennecke, Manfred T1 - Chemiluminescence - An advanced method for small extent, early stages and accelerated testing of the thermooxidative degradation in polymers T2 - Makromolekulares Kolloquium Freiburg CY - Freiburg im Breisgau, Germany DA - 2000-02-24 PY - 2000 SP - 45 CY - Freiburg im Breisgau AN - OPUS4-2435 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schartel, Bernhard A1 - Krüger, Simone A1 - Wachtendorf, Volker A1 - Hennecke, Manfred T1 - Excitation energy transfer of a bichromophoric cross-shaped molecule investigated by polarized fluorescence spectroscopy N2 - The excitation energy transfer (EET) of a bichromophoric cross-shaped molecule was investigated by stationary polarized fluorescence spectroscopy in the solid state. For this purpose 2,2[prime],7,7[prime]-tetrakis(biphenyl-4-yl)-9,9[prime]-spirobifluorene was embedded in a polymeric bisphenol-A-polycarbonate (PC) matrix. The dependence of the fluorescence on concentration and wavelength was determined. The role of the intermolecular and intramolecular EET is dealt with separately and discussed by means of the degree of polarization. The intermolecular excitation energy transfer is described in terms of a Förster transfer mechanism. The intramolecular transfer is prevented for the zero-point vibrational levels by the molecular cross-shaped structure, but is found for a wide range of wavelength, presumably based on vibrationally excited states. PY - 2000 DO - https://doi.org/10.1063/1.481620 SN - 0021-9606 SN - 1089-7690 VL - 112 IS - 22 SP - 9822 EP - 9827 PB - American Institute of Physics CY - Melville, NY AN - OPUS4-1038 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schartel, Bernhard A1 - Krüger, Simone A1 - Wachtendorf, Volker A1 - Hennecke, Manfred T1 - Chemiluminescence: A promising new testing method for plastic optical fibers N2 - The thermo-oxidative degradation of a polymeric optical cable is investigated by chemiluminescence, The results are reliable and reproducible. Two distinct processes are reported marked by a peak and a plateau behavior versus the time, respectively. Both processes are ruled by thermally activated processes. Beside the dependencies of temperature and time, the influence of absorbed water is discussed. Chemiluminescence is proposed as a promising candidate for a suitable testing method assessing the thermo-oxidative stability of plastic optical fibers and cables. it requires not more than a simple one-day testing procedure and has the advantage that it can be carried out even within the lo cv temperature ranges of the cables' intended use. KW - Chemiluminescence KW - Chemilumineszenz PY - 1999 DO - https://doi.org/10.1109/50.803022 SN - 0733-8724 SN - 1558-2213 VL - 17 IS - 11 SP - 2291 EP - 2296 PB - Institute of Electrical and Electronics Engineers CY - New York, NY AN - OPUS4-718 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Krüger, Simone A1 - Wachtendorf, Volker A1 - Hennecke, Manfred T1 - Investigation of Stability of Poly(phenyl-1,4-phenylenevinylene) by Thermo- and Chemiluminescence T2 - Excited States, Photochemistry, and Application CY - Noordwijk, Netherlands DA - 1998-06-16 PY - 1998 AN - OPUS4-7261 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kautek, Wolfgang A1 - Pentzien, Simone A1 - Rudolph, Pascale A1 - Krüger, Jörg A1 - König, E. T1 - Laser interaction with coated collagen und cellulose fibre composites: fundamentals of laser cleaning of ancient parchment manuscripts and paper N2 - Laser cleaning of delicate biological composite materials such as ancient parchment manuscripts from the 15th and 16th century and printed paper from the 19th century is demonstrated with an ultraviolet excimer pulsed laser at 308 nm. Laser fluence levels must stay below the ablation and destruction threshold of the parchment or paper substrate, and have to surpass the threshold of the contaminant matter. Foreign layers to be removed must exhibit a higher optical density than the artifact substrates. Synthetic carbonaceous dirt modelled by water-soluble black crayons showed a characteristically weak featureless laser-induced plasma spectroscopy spectrum near the noise limit. It turned out that laser-induced plasma spectroscopy is of limited use in monitoring halting points (or etch-stops) because it relies on the destruction not only of the laterally inhomogenously distributed contaminant but also of pigment phases on a microscopically rough parchment substrate. Laser-induced fluorescence spectroscopy, however, promises to be a valuable non-destructive testing technique for etch-stop monitoring. KW - Laser KW - Parchment KW - Papery KW - Spectroscopy KW - Laser cleaning PY - 1998 SN - 0169-4332 SN - 1873-5584 VL - 127-129 SP - 746 EP - 754 PB - North-Holland CY - Amsterdam AN - OPUS4-11516 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Schartel, Bernhard A1 - Krüger, Simone A1 - Wachtendorf, Volker A1 - Hennecke, Manfred T1 - Chemiluminescence - A promising new testing method for plastic optical fibres? T2 - 7th International Plastic Optical Fibres Conference (POF-7) CY - Berlin, Germany DA - 1998-10-05 PY - 1998 SN - 3-905084-55-4 VL - 7 SP - 248 EP - 249 PB - AKM AG CY - Basel AN - OPUS4-2433 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Krüger, Simone A1 - Wachtendorf, Volker A1 - Schartel, Bernhard A1 - Hennecke, Manfred T1 - Chemiluminescence of conjugated polymers T2 - International Workshop on Practical Applications of Chemiluminescence at the Oxidation of Chemical Systems CY - Smolenice, Slovakia DA - 1998-11-02 PY - 1998 AN - OPUS4-7263 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -