TY - GEN A1 - Baumer, Ursula A1 - Dietemann, Patrick A1 - Hahn, Oliver A1 - Obermeier, Andrea A1 - Stege, Heike A1 - Steger, Simon A1 - Steuer, Christoph A1 - Walcher, Jeanine ED - Geiger, Gisela ED - Bretz, Simone T1 - Die Malmaterialien der Hinterglasbilder Heinrich Campendonks T2 - Heinrich Campendonk. Die Hinterglasbilder. Werkverzeichnis N2 - Die Zusammensetzung der Malfarben Heinrich Campendonks in ihrer Kombination aus Farbpigmenten, Bindemitteln und Metallpulvern ist bislang nahezu unerforscht. Lediglich für wenige Leinwandgemälde des Künstlers liegen publizierte Untersuchungen zu den Farbmitteln vor. Materialanalysen zu den Hinterglasarbeiten des Malers fehlten bisher. Im Rahmen eines Forschungs- und Restaurierungsprojektes im Zeitraum von 2014 bis 2016 wurden naturwissenschaftliche Untersuchungen an ausgewählten Hinterglasbildern durchgeführt, deren Ergebnisse in diesem Aufsatz vorgestellten werden. Die Untersuchungen erfolgten zunächst nicht-invasiv mit VIS-Spektroskopie, Röntgenfluoreszenzanalyse sowie Ramanspektroskopie, weiterhin mit Licht- und Fluoreszenzmikroskopie, Rasterelektronenmikroskopie mit energiedispersiver Röntgenmikroanalyse, Fourier-Transformations-Infrarotspektroskopie, Raman-Mikroskopie und Gas-Chromatografie/Massenspektrometrie. KW - Hinterglasmalerei KW - Kunsttechnologie KW - Kunst- und Kulturgut PY - 2017 SN - 978-3-86832-320-7 SP - 78 EP - 89 PB - Wienand Verlag CY - Köln AN - OPUS4-39325 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Steger, Simon A1 - Rabin, Ira A1 - Stege, H. A1 - Hahn, Oliver T1 - Non-invasive, spectroscopic study of a modern reverse glass painting N2 - We present the first spectroscopic study on a reverse glass painting form the classic modern period (1905-1955). Marianne Uhlenhuth’s painting “Ohne Titel, 1954” shows characteristics like experimental use of colorants and abstract compositions, which are well-established in classic modern art. Compared to stained glass, reverse glass paintings are viewed in reflected light, hence they reveal strong and intense colors. New inorganic pigments, development of synthetic organic pigments and the simultaneous supersession of well-known ancient colorants result in experimental works and remarkable pigment mixtures in this period of time. An in-situ, non-invasive approach was used to study the pigments and binding media. In-situ measurements were carried out using Raman spectroscopy (i-Raman®Plus, Bwtek Inc., 785 nm, 20× objective, resolution 4 cm-1), X-ray fluorescence (Tracer III-SD, Bruker AXS Microanalysis GmbH, 40 kV, 15 μA), VIS spectroscopy (SPM 100, Gretag-Imaging AG) and DRIFTS: Diffuse Reflection-Infrared-Fourier-Transform Spectroscopy (ExoScan, Agilent GmbH, 4000-650 cm-1, 256 scans, resolution 4cm-1). The pigments consist of inorganic as well as organic materials. Phthalocyanin green (PG7, colour index No. 74260), viridian and emerald green were used for the green areas. The yellow parts consist of chrome yellow and cadmium yellow. Pigment Yellow 1 (C.I. 11680) was used for the dark yellow/orange part. Red areas were characterized by the presence of cadmium and selenium (cadmium red) in the XRF spectrum. Ultramarine was detected in the blue parts. Concerning the violet color PR81 (bluish red, C.I. 45160:1) in mixture with PG7 (bluish green) were identified as main components. We want to outline that PR81 was rarely found in paintings. It was only recorded in the palettes of Lucio Fontana and Mary Cassatt before. The dark violet areas consist of Prussian blue and an unknown red (organic) colorant. Brown iron oxide was identified as the brown pigment. Bone black in mixture with black iron oxide were used as black materials and zinc white and titanium white as white pigments. XRF analysis of the metal color yields intense copper, zinc and nickel peaks (intensity ratio 3:3:1), which corresponds to “new silver” alloy. Barite and chalk are the fillers in this painting. Results of DRIFTS spectra show gum sometimes mixed with protein or oil (metal soaps) as binding media. The results point out that reverse glass paintings from the classic modern period are excellent examples to study the evolution of new pigments and their acceptance in artist’s palettes. T2 - CSI-XL CY - Pisa, Italy DA - 11.06.2017 KW - Pigments KW - Reverse glass painting KW - Spectroscopy PY - 2017 AN - OPUS4-42336 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Steger, Simon A1 - Hahn, Oliver T1 - Study of modern reverse paintings on glass with Raman Spectroscopy N2 - The technique of painting on the reverse side of glass was rediscovered by artists in the 20th and gained especially in Germany strong popularity. Compared to other techniques (e.g. canvas, mural paintings), the paint layers are applied in reverse succession. The paintings are viewed in reflected light, thus revealing an impressive gloss, luminosity, and depth of color. Reverse glass paintings comprise a non-porous glass substrate and multi-layered paint system, hence delamination of the paint layer is the most common disfigurement. Scientific investigation of the material provides important information for appropriate conservation concepts. Transport of the precious and fragile objects to the lab is often not feasible. Therefore, in-situ, non-invasive analysis is necessary to analyze colorants and binders. Based on modern reverse glass paintings, we clarify advantages and limitations of mobile Raman spectroscopy for the identification of colorants. We compare the use of mobile Raman spectroscopy with other methods of our mobile lab (i.e. X-ray fluorescence (XRF), Diffuse Reflectance Fourier Transform Infrared Spectroscopy (DRIFTS). T2 - 9th International Congress on the Application of Raman Spectroscopy in Art and Archaeology (RAA2017) CY - Évora, Portugal DA - 24.10.2017 KW - Reverse glass painting KW - Raman spectroscopy KW - Synthetic organic pigments PY - 2017 AN - OPUS4-42825 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -