TY - CONF A1 - Miccoli, Lorenzo A1 - Müller, U. A1 - Silva, B. A1 - Da Porto, F. A1 - Hracov, S. A1 - Pospisil, S. A1 - Adami, C.-E. A1 - Vintzileou, E. A1 - Vasconcelos, G. A1 - Poletti, E. ED - Jasienko, J. T1 - Overview of different strengthening techniques applied on walls used in historical structures T2 - SAHC 2012 - 8th International conference on structural analysis of historical constructions CY - Wroclaw, Poland DA - 2012-10-15 KW - Stone masonry KW - Brick masonry KW - Earthen materials KW - Half timbered walls KW - Grouting PY - 2012 SN - 978-83-7125-216-7 SN - 0860-2395 VL - 3 SP - 2870 EP - 2878 PB - DWE CY - Wroclaw, Poland AN - OPUS4-27275 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Paganoni, S. A1 - D'Ayala, D. A1 - Miccoli, Lorenzo A1 - Hracov, S. A1 - Urushadze, S. A1 - Wünsche, M. A1 - Adami, C.-E. A1 - Vintzileou, E. A1 - Moreira, S. A1 - Oliveira, D.V. A1 - James, P. A1 - Cóias e Silva, V. ED - Jasienko, J. T1 - Connections and dissipative systems with early warning T2 - SAHC 2012 - 8th International conference on structural analysis of historical constructions CY - Wroclaw, Poland DA - 2012-10-15 KW - Seismic strengthening KW - Structural connections KW - Heritage buildings PY - 2012 SN - 978-83-7125-216-7 SN - 0860-2395 VL - 3 SP - 2888 EP - 2896 PB - DWE CY - Wroclaw, Poland AN - OPUS4-27276 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Bettencourt da Silva, R. A1 - Bulska, E. A1 - Godlewska-Zytkiewicz, B. A1 - Hedrich, Martina A1 - Majcen, N. A1 - Magnusson, B. A1 - Marincic, S. A1 - Papadakis, I. A1 - Patriarca, M. A1 - Vassileva, E. A1 - Taylor, P. ED - Majcen, N. ED - Gegevicius, V. T1 - Measurement uncertainty and statistics N2 - TrainMiC® is a European programme for lifelong learning on how to interpret the metrological requirements in chemistry. It is operational across many parts of Europe via national teams. These teams use shareware pedagogic tools which have been harmonised at European level through the joint effort of many experts across Europe working as an editorial board. The material has been translated into 14 different languages. This report includes four TrainMiC® presentations: 1. Uncertainty of measurement — Part I Principles; 2. Uncertainty of measurement — Part II Approaches to evaluation; 3. Statistics for analytical chemistry — Part I; and 4. Statistics for analytical chemistry — Part II KW - Chemistry KW - Statistical method KW - Scientific research KW - Materials technology KW - Research report KW - Measurement uncertainty KW - Statistics PY - 2013 SN - 978-92-79-23070-7 DO - https://doi.org/10.2787/5825 SN - 1018-5593 IS - JRC 68476 SP - Chapter 1-4, 19-230 AN - OPUS4-32534 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Protasov, E A1 - Noah, J O A1 - Kästle Silva, J O A1 - Mies, U S A1 - Hervé, V A1 - Dietrich, C A1 - Lang, K A1 - Mikulski, L A1 - Platt, K A1 - Poehlein, A A1 - Köhler-Ramm, T A1 - Miambi, E A1 - Boga, H I A1 - Feldewert, C A1 - Ngugi, G K A1 - Plarre, Rüdiger A1 - Sillam-Dussès, D A1 - Šobotník, J A1 - Daniel, R A1 - Brune, A T1 - Diversity and taxonomic revision of methanogens and other archaea in the intestinal tract of terrestrial arthropods N2 - Methane emission by terrestrial invertebrates is restricted to millipedes, termites, cockroaches, and scarab beetles. The arthropod-associated archaea known to date belong to the orders Methanobacteriales, Methanomassiliicoccales, Methanomicrobiales, and Methanosarcinales, and in a few cases also to nonmethanogenic Nitrososphaerales and Bathyarchaeales. However, all major host groups are severely undersampled, and the taxonomy of existing lineages is not well developed. Full-length 16S rRNA gene sequences and genomes of arthropod-associated archaea are scarce, reference databases lack resolution, and the names of many taxa are either not validly published or under-classified and require revision. Here, we investigated the diversity of archaea in a wide range of methane-emitting arthropods, combining phylogenomic analysis of isolates and metagenome-assembled genomes (MAGs) with amplicon sequencing of full-length 16S rRNA genes. Our results allowed us to describe numerous new species in hitherto undescribed taxa among the orders Methanobacteriales (Methanacia, Methanarmilla, Methanobaculum, Methanobinarius, Methanocatella, Methanoflexus, Methanorudis, and Methanovirga, all gen. nova), Methanomicrobiales (Methanofilum and Methanorbis, both gen. nova), Methanosarcinales (Methanofrustulum and Methanolapillus, both gen. nova), Methanomassiliicoccales (Methanomethylophilaceae fam. nov., Methanarcanum, Methanogranum, Methanomethylophilus, Methanomicula, Methanoplasma, Methanoprimaticola, all gen. nova), and the new family Bathycorpusculaceae (Bathycorpusculum gen. nov.). Reclassification of amplicon libraries from this and previous studies using this new taxonomic framework revealed that arthropods harbor only CO2 and methyl-reducing hydrogenotrophic methanogens. Numerous genus-level lineages appear to be present exclusively in arthropods,suggesting long evolutionary trajectories with their termite, cockroach, and millipede hosts, and a radiation into various microhabitats and ecological nichesprovided by their digestive tracts (e.g., hindgut compartments, gut wall, or anaerobic protists). The distribution patterns among the different host groups are often complex, indicating a mixed mode of transmission and a parallel evolution of invertebrate and vertebrate-associated lineages. KW - Nitrososphaerales KW - Archaea KW - Methanogens KW - Gut microbiota KW - Termites KW - Cockroaches KW - Millipedes KW - Bathyarchaeia PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-588230 DO - https://doi.org/10.3389/fmicb.2023.1281628 SN - 1664-302X VL - 14 SP - 1 EP - 21 PB - Frontiers AN - OPUS4-58823 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Philipp, Rosemarie A1 - Lalere, B. A1 - Gantois, F. A1 - Sánchez, C. A1 - Sáez, A. A1 - Bebić, J. A1 - Banjanac, K. A1 - Alexopoulos, Ch. A1 - Kakoulides, E. A1 - Claramunt, A. V. A1 - Janko, P. A1 - Jotanovic, A. A1 - Hafner-Vuk, K. A1 - Buzoianu, M. A1 - Mihail, R. A1 - Fernández, M. M. A1 - Etcheverry, J. A1 - Mbithi Muendo, B. A1 - Muriira Karau, G. A1 - Silva, A. A1 - Almirón, F. A1 - Marajh, D. A1 - Makgatho, P. A1 - Visser, R. A1 - Alaskar, A. R. A1 - Alosaimi, A. A1 - Alrashed, M. A1 - Yılmaz, H. A1 - Ün, İ. A1 - Gündüz, S. A1 - Topal, K. A1 - Bilsel, M. A1 - Karasinski, J. A1 - Torres, J. T1 - Supplementary comparison study - measurement capabilities for the quantification of ethanol in water N2 - The accurate quantification of ethanol in water is essential for forensic applications such as blood and breath alcohol testing and for commercial applications such as the assessment of alcoholic beverages. The intercomparison EURAMET.QM-S14 is part of a capacity building project named ALCOREF “Certified forensic alcohol reference materials” that is running within the European Metrology Programme for Innovation and Research (EMPIR). The intercomparison should allow project partners and other interested National Metrology Institutes (NMIs) and Designated Institutes (DIs) to benchmark their analytical methods for the quantification of ethanol in water. The study plan was agreed by the European Association of National Metrology Institutes (EURAMET) Subcommittee Bio- and Organic Analysis (SCBOA) and the Organic Analysis Working Group (OAWG) of the Comité Consultatif pour la Quantité de Matière (CCQM) in February and April 2019, respectively. The intercomparison was coordinated by BAM. Two concentration levels relevant for the calibration and verification of evidential breath alcohol analysers were distributed to study participants. Fifteen institutes from 15 countries registered for the intercomparison and returned results. Participants mostly applied gas chromatography with flame ionisation detection (GC-FID) or mass spectroscopy (GC-MS), one participant used titrimetry and one participant employed a test bench for breath analyser calibration (“bubble train”). Participants did either in-house purity assessment of their commercial ethanol calibrants by Karl-Fischer titration, chromatographic methods, quantitative nuclear magnetic resonance spectroscopy (qNMR) and/or density measurements; or they used ethanol/water Certified Reference Materials (CRMs) from NMIs/DIs for calibration. CCQM OAWG agreed to use a consensus value from participants results that utilizes the reported uncertainties as Key Comparison Reference Value (KCRV). The Gaussian Random effects model with Hierarchical Bayesian solution (HB-REM) is a reasonable approach in this case. The KCRVs and Degrees of Equivalence (DoEs) were calculated with the NIST consensus builder version 1.2 Hierarchical Bayes procedure. Successful participation in the interlaboratory comparison has demonstrated the capabilities in determining the mass fraction of ethanol in aqueous matrices in the range 0.1 mg/g to 8 mg/g. Fourteen out of 15 participants have successfully quantified both samples, one participant successfully quantified only the lower-level (0.6 mg/g) sample. KW - Certified reference material KW - EURAMET KW - EMPIR KW - ALCOREF KW - Ethanol in water KW - Supplementary comparison PY - 2022 DO - https://doi.org/10.1088/0026-1394/59/1A/08015 VL - 59 IS - 1A SP - 08015 PB - IOP Publishing AN - OPUS4-55889 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Guerra, E. S. S. A1 - Silva, B. L. A1 - Melo, J. D. D. A1 - Kalinka, Gerhard A1 - Barbosa, A. P. C. T1 - Microscale evaluation of epoxy matrix composites containing thermoplastic healing agent N2 - Among the strategies to produce healable thermosetting systems is their modification by the addition of thermoplastic particles. This work investigates the influence of poly(ethylene-co-methacrylic acid) (EMAA) on fibermatrix interfacial properties of a glass fiber reinforced epoxy matrix composite. Epoxy-EMAA interactions were evaluated using differential scanning calorimetry (DSC) and infrared spectroscopy. The effects of EMAA on the epoxy network formation were evidenced by changes in glass transition temperature, cure kinetics and alteration of chemical groups during cure. Interfacial shear strength (IFSS) measurements obtained by single fiber pull-out tests indicate similar interfacial properties for pure and EMAA modified epoxy. Additionally, the potential for self-healing ability of an EMAA modified epoxy was demonstrated. However, IFSS after a healing cycle for the EMAA modified epoxy was lower as compared to the pure epoxy, because of the lower fiber-EMAA interfacial shear strength. So, thermoplastic healing agents has not only to fill cracks in the matrix material, but also have to be optimized regarding its interface properties to the reinforcing fibers. KW - Interfacial strength KW - Fiber/matrix bond KW - Self-healing KW - Polymer-matrix composites (PMC) PY - 2022 DO - https://doi.org/10.1016/j.compscitech.2022.109843 SN - 0266-3538 VL - 232 SP - 1 EP - 9 PB - Elsevier Ltd. CY - Niederlande AN - OPUS4-56379 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Darvishi Kamachali, Reza A1 - da Silva, A. A1 - McEniry, E. A1 - Gault, B. A1 - Neugebauer, J. A1 - Raabe, D. T1 - Segregation-assisted spinodal and transient spinodal phase separation at grain boundaries N2 - Segregation to grain boundaries affects their cohesion, corrosion, and embrittlement and plays a critical role in heterogeneous nucleation. In order to quantitatively study segregation and low-dimensional phase separation at grain boundaries, here, we apply a density-based phase-field model. The current model describes the grain-boundary thermodynamic properties based on available bulk thermodynamic data, while the grain-boundary-density profile is obtained using atomistic simulations. To benchmark the performance of the model, Mn grain-boundary segregation in the Fe–Mn system is studied. 3D simulation results are compared against atom probe tomography measurements conducted for three alloy compositions. We show that a continuous increase in the alloy composition results in a discontinuous jump in the segregation isotherm. The jump corresponds to a spinodal Phase separation at grain boundary. For alloy compositions above the jump, we reveal an interfacial transient spinodal phase separation. The transient spinodal phenomenon opens opportunities for knowledge-based microstructure design through the chemical manipulation of grain boundaries. The proposed density-based model provides a powerful tool to study thermodynamics and kinetics of segregation and phase changes at grain boundaries. KW - Grain Boundary Spinodal KW - Densty-based Thermodynamics KW - Microstrucrue Design PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-519497 DO - https://doi.org/10.1038/s41524-020-00456-7 VL - 6 IS - 1 SP - 191 PB - Nature AN - OPUS4-51949 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Knisz, J. A1 - Eckert, R. A1 - Gieg, L. A1 - Koerdt, Andrea A1 - Lee, J. A1 - Silva, E. A1 - Skovhus, T. L. A1 - An Stepec, Biwen Annie A1 - Wade, S. A. T1 - Microbiologically Influenced Corrosion - More than just Microorganisms N2 - Microbiologically influenced corrosion (MIC) is a phenomenon of increasing concern which affects various materials and sectors of society. MIC describes the effects, often negative, that a material can experience due to the presence of microorganisms. Unfortunately, although several research groups and industrial actors worldwide have already addressed MIC, discussions are fragmented, while information sharing and willingness to reach out to other disciplines is limited. A truly interdisciplinary approach, that would be logical for this material/biology/chemistry-related challenge, is rarely taken. In this review we highlight critical non-biological aspects of MIC that can sometimes be overlooked by microbiologists working on MIC but are highly relevant for an overall understanding of this phenomenon. Here, we identify gaps, methods and approaches to help solve MIC related challenges, with an emphasis on the MIC of metals. We also discuss the application of existing tools and approaches for managing MIC and propose ideas to promote an improved understanding of MIC. Furthermore, we highlight areas where the insights and expertise of microbiologists are needed to help progress this field. KW - MIC KW - Biodeterioration KW - Biocorrosion KW - Interdisciplinarity KW - Multiple lines of evidence PY - 2023 DO - https://doi.org/10.1093/femsre/fuad041 SN - 0168-6445 VL - 47 IS - 5 SP - 1 EP - 70 PB - FEMS Microbiology Reviews AN - OPUS4-58066 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Oliveira, D.F. A1 - Moreira, E.V. A1 - Silva, A.S.S. A1 - Rabello, J.M.B. A1 - Lopes, R.T. A1 - Pereira, M.S. A1 - Zscherpel, Uwe T1 - Application of the digital radiography in weld inspection of gas and oil pipelines N2 - The aim of this work is to evaluate the feasibility of the direct radiography on weld inspection in oil pipelines and gas pipeline during the manufacturing process. To that, 6 specimens with 6 different thickness and varied height of reinforced weld with 5 different kinds of defects were made. All samples were radiographied using Class I films and flat panel. For all specimens the inspection length was 8''. Thus, with the flat panel the detector-to-object distance varied so that it may adequate to several diameters of the tubes. The detector-to-object distance was calculated based on the physical size of the detector taking into consideration a safe distance between the tube curvature and the flat panel extremities, keeping the lowest possible magnification factor so that it could be obtained the length of the inspection. Images with 6 integration time for each experimental arrangement were obtained. The images obtained with the Flat Panel/YXLON system were analyzed according to their quality by using the Contrast parameters (essential wire) (DNV 2007/ IS0 12096 – with reinforcement and ISO 10893-7 – basis material), Basic Spatial Resolution – BSR (ISO 10893-7) and normalized signal-to-noise ratio - SNRN (ISO 10893-7) and by detectability using as reference the conventional radiography. The results showed that for all thickness, the exposure time used to meet the image quality requirements were below with direct radiography. However the BSR were not reached for thickness of 4.85, 6.40 and 9.67 mm, therefore the compensation principle established by ISO 10893-7 was considered, that is, one more contrast wire for a less wire pair. The digital technique proved to be more sensitive to real defects found on welds than the conventional technique. Then it can be conclude that the digital radiography utilizing the flat panel can be applicable to the oil and gas segment with advantages over conventional technique as to quality aspects, productivity, environment, safety and health. T2 - 10th European conference on non-destructive testing CY - Moscow, Russia DA - 2010-06-07 KW - Zerstörungsfreie Prüfung KW - Durchstrahlungsprüfung KW - Digitale Radiologie PY - 2010 UR - http://www.ndt.net/article/ecndt2010/reports/1_04_01.pdf IS - Paper 4.02.18 SP - 1 EP - 11(?) AN - OPUS4-22502 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kling e Silva, Lucas A1 - Sonntag, Nadja A1 - Skrotzki, Birgit T1 - AQSD - Magnetic characterization of steels AlSi A 366, AlSi S 235 and AlSi 304 using bitter technic (ferrofluid) T2 - XIV Brazilian Materials Research Society meeting CY - Rio de Janeiro, Brazil DA - 2015-09-27 PY - 2015 AN - OPUS4-34152 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kling e Silva, Lucas A1 - Sonntag, Nadja A1 - Skrotzki, Birgit T1 - Magnetic characterization before and after deformation of non-alloyed contruction steels using bitter technique T2 - 15° ENEMET - ABM Week 2015 CY - Rio de Janeiro, Brazil DA - 2015-08-17 PY - 2015 AN - OPUS4-34626 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Costa e Silva, A. A1 - Coelho, D. A1 - Rizzo, F. A1 - Kranzmann, Axel T1 - Simulation of Fe-Cr-X alloy exposed to an oxyfuel combustion atmosphere at 600 °C N2 - In coal-fired power plants using oxyfuel combustion process with carbon capture and sequestration, instead of air, a mixture of oxygen and recirculated flue gas is injected in the boiler. A series of steels were exposed to CO2-SO2-Ar-H2O gas mixtures at 600 °C for 1000 h to compare their high temperature corrosion behavior. During the corrosion process, carburization, decarburization and recrystallization were observed underneath the oxide scale depending on the gas mixture and alloy composition. The conditions that lead to carburization are not yet completely understood, but decarburization can be simulated using thermodynamic and kinetic models. In this work, the results of these simulations are compared with measured values for one of the alloys that displayed a decarburized region. Since the mobility of carbon in the scale is not known, two strategies were adopted: simulation of alloy-atmosphere contact; and estimation of the carbon flux to produce the observed decarburization. The second approach might give an insight on how permeable to carbon the scale is. KW - CALPHAD approach KW - Corrosion KW - Decarburization KW - DICTRA modeling KW - Experimental kinetics KW - Iron alloys KW - Kinetics KW - Multicomponent diffusion KW - Steel PY - 2016 DO - https://doi.org/10.1007/s11669-015-0421-3 SN - 1547-7037 SN - 1863-7345 VL - 37 IS - 1 SP - SI, 19 EP - 24 PB - Springer US AN - OPUS4-40110 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Costa e Silva, A. A1 - Coelho, D. A1 - Kranzmann, Axel A1 - Rizzo, Fernando T1 - Simulation of Fe-Cr-X Alloy Exposed to an Oxyfuel Combustion Atmosphere at 600°C N2 - In coal-fired power plants using oxyfuel combustion process with carbon capture and sequestration, instead of air, a mixture of oxygen and recirculated flue gas is injected in the boiler. A series of steels were exposed to CO2-SO2-Ar-H2O gas mixtures at 600 °C for 1000 h to compare their high temperature corrosion behavior. During the corrosion process, carburization, decarburization and recrystallization were observed underneath the oxide scale depending on the gas mixture and alloy composition. The conditions that lead to carburization are not yet completely understood, but decarburization can be simulated using thermodynamic and kinetic models. In this work, the results of these simulations are compared with measured values for one of the alloys that displayed a decarburized region. Since the mobility of carbon in the scale is not known, two strategies were adopted: simulation of alloy-atmosphere contact; and estimation of the carbon flux to produce the observed decarburization. The second approach might give an insight on how permeable to carbon the scale is. KW - CALPHAD approach KW - Corrosion KW - Decarburization KW - DICTRA modeling KW - Experimental kinetics PY - 2016 DO - https://doi.org/10.1007/s11669-015-0421-3 SN - 1547-7037 VL - 37 IS - 1 SP - 19 EP - 24 PB - ASTM International AN - OPUS4-50612 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kling e Silva, L. A1 - Almeida, G. A1 - Kadoke, Daniel A1 - Daum, Werner A1 - Ribeiro Pereira, G. T1 - Automation of pipe defect detection and characterization by structured light N2 - High quality tubular products are essential to the oil and gas industry. Quality control during their production focuses on the non-destructive detection of surface defects. The structured light technique is a candidate for the challenge to detect, monitor and evaluate such defects in real-time. In the present study the automatic processing of structured light measurements is performed and validated. The algorithm for the automatic Analysis of inspection data has an advantage over current data evaluation methods based on individual assessments of operators. KW - Non-destructive testing KW - Data processing KW - Defect evaluation KW - Materials evaluation KW - Structured light scanning (SLS) PY - 2021 DO - https://doi.org/10.1515/mt-2020-0008 SN - 0033-8230 VL - 63 IS - 1 SP - 55 EP - 61 PB - Walter de Gruyter GmbH CY - Berlin/ Boston AN - OPUS4-52124 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sonntag, Nadja A1 - Cabeza, S. A1 - Kuntner, M. A1 - Mishurova, Tatiana A1 - Klaus, M. A1 - Kling e Silva, L. A1 - Skrotzki, Birgit A1 - Genzel, Ch. A1 - Bruno, Giovanni T1 - Visualisation of deformation gradients in structural steel by macroscopic magnetic domain distribution imaging (Bitter technique) N2 - Abstract While classically used to visualise the magnetic microstructure of functional materials (e.g., for magnetic applications), in this study, the Bitter technique was applied for the first time to visualise macroscopic deformation gradients in a polycrystalline low-carbon steel. Spherical indentation was chosen to produce a multiaxial elastic–plastic deformation state. After removing the residual imprint, the Bitter technique was applied, and macroscopic contrast differences were captured in optical microscopy. To verify this novel characterisation technique, characteristic “hemispherical” deformation zones evolving during indentation were identified using an analytical model from the field of contact mechanics. In addition, near-surface residual stresses were determined experimentally using synchrotron radiation diffraction. It is established that the magnetic domain distribution contrast provides deformation-related information: regions of different domain wall densities correspond to different “hemispherical” deformation zones (i.e., to hydrostatic core, plastic zone and elastic zone, respectively). Moreover, the transitions between these three zones correlate with characteristic features of the residual stress profiles (sign changes in the radial and local extrema in the hoop stress). These results indicate the potential of magnetic domain distribution imaging: visualising macroscopic deformation gradients in fine-grained ferromagnetic material with a significantly improved spatial resolution as compared to integral, mean value-based measurement methods. KW - Bitter technique KW - Deformation KW - Expanding cavity model KW - Indentation KW - Magnetic domain distribution KW - Residual stress PY - 2018 DO - https://doi.org/10.1111/str.12296 SN - 1475-1305 VL - 54 IS - 6 SP - e12296, 1 EP - 15 PB - Wiley AN - OPUS4-46569 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kling e Silva, Lucas A1 - Sonntag, Nadja A1 - Skrotzki, Birgit T1 - CARACTERIZAÇÃO MAGNÉTICA PRÉ E PÓS DEFORMAÇÃO DE AÇOS DE CONSTRUÇÃO NÃO LIGADOS ATRAVÉS DA TÉCNICA BITTER (FERROFLUIDO) T1 - Magnetic characterization before and after deformation of non-alloyed contruction steels using bitter technic N2 - The plastic deformation results in irreversible microstructure changes in the steel, which can be considered as the initial stage of the fracture process. However, detecting, monitoring and evaluating, damage states and small defects non-destructively in advance still proves challenging. Dubov reported the phenomenon of the spontaneous emergence of weak magnetic fields in ferritic structural steel and pipelines, which originate due to heterogeneous mechanical and / or thermal stresses. This observation is not associated with induced phase transformations by deformation and appears to be a promising tool for the prior characterization of damage in ferromagnetic steels. To provide a better understanding of the physical bases of the process, the magnetic microstructure of such materials and a change of magnetic domains after undergoing plastic deformation were studied. A colloidal solution with paramagnetic particles in the nanometer range (ferrofluid), which allowed, through the Bitter technique, not only to observe a change in size of the magnetic domains of the material, but also changes in their morphology. Ferritic steels with their concentrations of carbon in its composition (0.12%; 0.17% and 0.45%) were studied in this work. T2 - 15° ENEMET - ABM Week 2015 CY - Rio de Janeiro, Brazil DA - 17.08.2015 KW - Magnetic Domains KW - Bitter Technique KW - Steels KW - Ferrofluid PY - 2015 DO - https://doi.org/10.5151/1516-392X-26931 SN - 2594-4711 VL - 15 IS - 15 SP - 2942 EP - 2950 PB - Blucher Preceedings CY - Rio de Janeiro, Brazil AN - OPUS4-48875 LA - mul AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kling e Silva, Lucas A1 - Pereira, Gabriela Ribeiro A1 - Jardim, Paula Mendes A1 - Sonntag, Nadja A1 - Skrotzki, Birgit T1 - CARACTERIZAÇÃO MAGNÉTICA DOS EFEITOS DE DEFORMAÇÃO EM AÇOS ESTRUTURAIS ATRAVÉS DA TÉCNICA BITTER MODIFICADA N2 - The plastic deformation results in irreversible microstructure changes in the steel, which can be considered as the initial stage of the fracture process. However, detecting, monitoring and evaluating, damage states and small defects non-destructively in advance still proves challenging. It was reported in literature the phenomenon of the spontaneous emergence of weak magnetic fields in structural steels and pipelines, which originates due to heterogeneous mechanical and / or thermal stresses. This observation is not associated with induced phase transformations by deformation and appears to be a promising tool for the prior characterization of damage in ferromagnetic steels. To provide a better understanding of the physical bases of the process, the magnetic microstructure of such materials and the change of magnetic domains after undergoing plastic deformation were studied. For this purpose, a colloidal solution with paramagnetic particles in the nanometer scale (ferrofluid) was used, through the Bitter technique, in order to, not only observe a change in size of the magnetic domains of the material, but also changes in their morphology. Ferritic steels with different carbon contents (0.08%; 0.22% and 0.45%) were studied in this work. T2 - ABM Week 2017 CY - Sao Paulo, Brazil DA - 02.10.2017 KW - Magnetic domains KW - Steels KW - Ferrofluid KW - Plastic deformation PY - 2017 DO - https://doi.org/10.5151/1516-392X-30810 SN - 2594-5327 VL - 72 IS - 1 SP - 3003 EP - 3013 PB - Blucher Preceeding CY - Brasilien AN - OPUS4-48876 LA - por AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Brusamarello-Santos, L. C. C. A1 - Alberton, D. A1 - Valdameri, G. A1 - Camilios-Neto, D. A1 - Covre, R. A1 - Lopes, K. d. P. A1 - Zibetti Tadra-Sfeir, M. A1 - Faoro, H. A1 - Adele Monteiro, R. A1 - Barbosa-Silva, A. A1 - Broughton, William John A1 - Oliveira Pedrosa, F. A1 - Wassem, R. A1 - de Souza, E.M. T1 - Modulation of defence and iron homeostasis genes in rice roots by the diazotrophic endophyte Herbaspirillum seropedicae N2 - Rice is staple food of nearly half the world’s population. Rice yields must therefore increase to feed ever larger populations. By colonising rice and other plants, Herbaspirillum spp. stimulate plant growthand productivity. However the molecular factors involved are largely unknown. To further explore this interaction, the transcription profiles of Nipponbare rice roots inoculated with Herbaspirillum seropedicae were determined by RNA-seq. Mapping the 104 million reads against the Oryza sativa cv. Nipponbare genome produced 65 million unique mapped reads that represented 13,840 transcripts each with at least two-times coverage. About 7.4% (1,014) genes were differentially regulated and of these 255 changed expression levels more than two times. Several of the repressed genes encoded proteins related to plant defence (e.g. a putative probenazole inducible protein), plant disease resistance as well as enzymes involved in flavonoid and isoprenoid synthesis. Genes related to the synthesis and efflux of phytosiderophores (PS) and transport of PS-iron complexes were induced by the bacteria. These data suggest that the bacterium represses the rice defence system while concomitantly activating iron uptake. Transcripts of H. seropedicae were also detected amongst which transcripts of genes involved in nitrogen fixation, cell motility and cell wall synthesis were the most expressed. KW - Herbaspirillum seropedicae KW - Pathogen KW - Rice KW - qPCR KW - Genome PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-490122 DO - https://doi.org/10.1038/s41598-019-45866-w SN - 2045-2322 VL - 9 SP - 10573-1 EP - 10573-15 PB - Nature CY - London AN - OPUS4-49012 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -