TY - CONF A1 - Madkour, Sherif A1 - Szymoniak, Paulina A1 - Schönhals, Andreas T1 - Dielectric and thermal relaxation behavior of ultra-thin films of poly(vinyl methyl ether) – evidence of an adsorbed layer N2 - Despite the many controversial discussions about the nanometric confinement effect on the properties of ultra-thin films, much remain not understood and/or experimentally unproven. Here, a combination of Broadband Dielectric Spectroscopy (BDS) and Specific Heat Spectroscopy (SHS) employing AC nanochip calorimetry were utilized to investigate the glassy dynamics of ultra-thin films of a low MW Poly (vinyl methyl ether) (PVME) (thicknesses: 7 nm – 160 nm). For BDS measurements, a recently developed nano-structured electrode sample arrangement is employed; where ultra-thin films are spin-coated on an ultra-flat highly conductive silicon wafer, sandwiched between a wafer with nanostructured SiO2 nano-spacers with heights between 35 nm and 70 nm. For films with thicknesses up to 50 nm, BDS measurements showed two relaxation processes, which can be analyzed for these film thicknesses in details. The process located at higher frequencies coincidence in both, its position and temperature dependence, with the -relaxation of bulk PVME and is therefore assigned to the -relaxation of a bulk-like layer. The temperature dependence of the relaxation rate of this process in independent of film thickness. This is further confirmed by the SHS investigations, which superimpose in its temperature dependence with the BDS results; independent of film thickness. The second process is located at lower frequencies, where it shows a different temperature dependence and ascribed to the relaxation of polymer segments adsorbed at the substrate. The interaction of PVME with SiO2 was further confirmed by contact angle investigations. This adsorbed layer further undergoes a confinement effect that results in a lower Vogel temperature than that of the bulk-like layer. A detailed analysis of the dielectric strengths of both processes reveals that the thickness of the adsorbed layer decreases with increasing temperature, while that of the bulk-like layer increases. As a main conclusion, BDS showed that the glassy dynamics of the bulk-like and the adsorbed layer are thickness independent, which is in agreement with the SHS results. To our knowledge, this is the first probing of the segmental dynamics of an adsorbed layer in ultrathin films. T2 - 9th International Conference on Broadband Dielectric Spectroscopy and its Applications CY - Pisa, Italy DA - 11.09.2016 KW - Ultra-thin films KW - Broadband dielectric spectroscopy KW - Specific heat spectroscopy PY - 2016 AN - OPUS4-37528 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Madkour, Sherif A1 - Szymoniak, Paulina A1 - Heidari, Mojdeh A1 - von Klitzing, Regine A1 - Schönhals, Andreas T1 - Evidence of a three-layered structure in ultra-thin PVME and PVME/PS blend films by nano-sized relaxation spectroscopy N2 - Despite the many controversial discussions about the nanometric confinement effect and the predictions of the three-layer model, much remain not understood and/or experimentally unproven. Here, a combination of Broadband Dielectric Spectroscopy (BDS), Specific Heat Spectroscopy (SHS), and ellipsometry was utilized to investigate the glassy dynamics of ultra-thin films of Poly (vinyl methyl ether) (PVME) and PVME/Polystyrene (PS) 50:50 wt-% miscible blend (thicknesses: 8nm - 200nm). For BDS measurements, a recently developed nano-structured sample arrangement; where ultra-thin films are spin-coated on an ultra-flat highly conductive silicon wafer and sandwiched between a wafer with nanostructured silica nano-spacers, was used. For PVME films, two processes were observed and interpreted to be the α-processes of a bulk-like layer and an absorbed layer to the substrate. BDS and SHS showed that glassy dynamics are bulk-like. However, for films lower than 15nm, BDS showed weakly slowed dynamics. For PVME/PS blend, by a self-assembling process, a nanometer-thin surface layer with a higher molecular mobility is formed at the polymer/air interface. By measuring the dynamic Tg in dependence on the film thickness, both BDS and SHS, showed that the Tg of the whole film was strongly influenced by that nanometer thick surface layer, with a lower Tg. T2 - 80. Jahrestagung der DPG und DPG-Frühjahrstagung CY - Regensburg DA - 06.03.2016 KW - Ultra-thin films PY - 2016 AN - OPUS4-35540 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -