TY - JOUR A1 - García-González, M. A1 - González-González, I. A1 - García-García, I. A1 - Blasón Gonzalez, Sergio A1 - Lamela-Rey, M. J. A1 - Fernández-Canteli, A. A1 - Álvarez-Arenal, A. T1 - Effect of abutment finish lines on the mechanical behavior and marginal fit of screw-retained implant crowns: An in vitro study N2 - Statement of problem The design of the implant-abutment connection has been widely researched, but the impact of different crown-abutment geometries remains unclear. Purpose The purpose of this in vitro study was to evaluate the effect of different crown-abutment margin geometries on the mechanical behavior and fit of screw-retained implant-supported single-crown restorations by using mechanical static and fatigue tests and mastication simulation. Material and methods A total of 45 cobalt-chromium premolar-shaped metal frameworks were fabricated for single-unit implant-supported screw-retained restorations on stock abutments and internal hexagon Ø4.25×11-mm cylindrical implants. They were divided into 3 groups according to margin geometry: S, shoulder; C, chamfer; and F, feather-edge. Three static load until fracture and 24 dynamic load tests were performed by using the International Organization for Standardization 14801:2016 standard (ISO 14801:2016) (number of cycles limit: 5×106 cycles, frequency: 6 Hz). The ProFatigue software program was used to optimize the procedure (S, n=12 specimens; C, n=7 specimens; and F, n=5 specimens). Six additional specimens from each group were subjected to a mastication simulation (limit number of cycles: 1×106 cycles, cyclic loading from Pmin=30 N to Pmax=300 N, frequency: 6 Hz). Results from the fatigue tests were reported descriptively, and the Fisher exact test was used to analyze the difference in failure modes. Data from maximum misfit were evaluated by photogrammetry and statistically analyzed with the Anderson-Darling test and the Kruskal-Wallis and Dunn multiple comparison tests (α=.05). Results The fatigue limit was 456 N for group S, 512 N for group C, and 514 N for group F. The mean ±standard deviation misfit was 2.6 ±0.1 μm for group S, 3.8 ±1.1 μm for group C, and 3.6 ±0.8 μm for group F. Differences in misfit between groups S and C and between groups S and F were statistically significant (P<.05). Conclusions Crown-abutment connections with chamfer and feather-edge margins showed better mechanical behavior, while shoulder margin exhibited better fit. However, high levels of fit were achieved for all the evaluated geometries. KW - Photogrammetry KW - Implant-supported prostheses KW - Crown-abutment connection KW - Margin design KW - Static load KW - Dynamic load KW - Misfit PY - 2022 DO - https://doi.org/10.1016/j.prosdent.2021.08.028 SN - 0022-3913 VL - 127 IS - 2 SP - 318.e1 EP - 318.e10 PB - Elsevier AN - OPUS4-55238 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - García-González, M. A1 - Blasón Gonzalez, Sergio A1 - García-García, I. A1 - Lamela-Rey, M. J. A1 - Fernández-Canteli, A. A1 - Álvarez-Arenal, Á. T1 - Optimized planning and evaluation of dental implant fatigue testing: A specific software application N2 - Mechanical complications in implant-supported fixed dental prostheses are often related to implant and prosthetic design. Although the current ISO 14801 provides a framework for the evaluation of dental implant mechanical reliability, strict adherence to it may be difficult to achieve due to the large number of test specimens which it requires as well as the fact that it does not offer any probabilistic reference for determining the endurance limit. In order to address these issues, a new software program called ProFatigue is presented as a potentially powerful tool to optimize fatigue testing of implant-supported prostheses. The present work provides a brief description of some concepts such as load, fatigue and stress-number of cycles to failure curves (S-N curves), before subsequently describing the current regulatory situation. After analyzing the two most recent versions of the ISO recommendation (from 2008 and 2016), some limitations inherent to the experimental methods which they propose are highlighted. Finally, the main advantages and instructions for the correct implementation of the ProFatigue free software are given. This software will contribute to improving the performance of fatigue testing in a more accurate and optimized way, helping researchers to gain a better understanding of the behavior of dental implants in this type of mechanical test. KW - Dental materials KW - Prostheses KW - Implants KW - Reference standards KW - Software KW - Cyclic loading KW - Fatigue KW - Lifetime KW - S-N curve KW - Staircase method PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-516268 DO - https://doi.org/10.3390/biology9110372 SN - 2079-7737 VL - 9 IS - 11 SP - 372-1 EP - 372-12 PB - MDPI CY - Basel AN - OPUS4-51626 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Castanon-Jano, Laura A1 - Palomera-Obregon, Paula A1 - Lázaro, Mariano A1 - Blanco-Fernandez, Elena A1 - Blasón Gonzalez, Sergio T1 - Enhancing sustainability in polymer 3D printing via fusion filament fabrication through integration of by-products in powder form: Mechanical and thermal characterization N2 - FFF (fused filament fabrication) is a type of 3D printing that utilizes filament for part creation. This study proposes using by-products or waste to replace part of the plastic in FFF filament, reducing environmental impact. The aim is to maintain a simple manufacturing process involving extrusion on a single-screw desktop machine followed by printing. The plastic matrix comprises polylactic acid (PLA) and polyethylene glycol (PETG), with added powdered by-products: seashells, car glass and mill scale (metal). Additives will be incorporated at 10% and 20% by weight, with two grain sizes: up to 0.09 mm and up to 0.018 mm. Mechanical tests (tensile, flexural and hardness) and thermal characterization tests will be conducted. Findings suggest adding 10%w powder of any variety to PETG increases tensile strength up to 48%, with metal powder (mill scale) showing the highest enhancement, even at 20%w, resulting in a 41% increase. Conversely, adding powder to PLA worsens mechanical properties without stiffening the material; instead, the elastic modulus decreases. Metal grain size has minimal impact, with grain sizes lower than 0.09 mm optimal for PLA. Thermal conductivity in polymers blended with powder additives is lower than in virgin polymers, likely due to air void formation, supported by density and microscopic evaluations. This research underscores the potential of utilizing waste materials with a simple FFF filament production to enhance sustainability in 3D printing practices. KW - 3D printing KW - FFF KW - PLA KW - PETg KW - Metal powder KW - Glass powder KW - Seashells powder KW - Tension KW - Bending KW - Thermal properties KW - Sustainability KW - Plastic consumption PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-635027 DO - https://doi.org/10.1007/s00170-024-13635-3 SN - 0268-3768 VL - 133 IS - 3-4 SP - 1251 EP - 1269 PB - Springer CY - London AN - OPUS4-63502 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Blasón Gonzalez, Sergio A1 - Chaudry, Mohsin Ali A1 - Elorriaga, A. A1 - Madia, Mauro A1 - Zerbst, Uwe A1 - Llavori, I. A1 - Hilgenberg, Kai T1 - Design methodology of vessel produced by L PBF stainless steel using representative specimens N2 - This work presents the preliminary results of an ongoing project with a double objective: on the one hand, the characterisation of the mechanical properties against fatigue damage of an additively manufactured 316 stainless steel produced by laser powder bed-based (L-PBF) technology; on the other hand, the implementation of numerical simulation techniques able to predict the mechanical behaviour of the material in order to optimise and reduce the design costs of vessels used in the chemical sector. The current state of the work developed in this research framework allows showing the first batch of experimental results of crack propagation rate (FCGR) and high cycle fatigue (HCF) tests. The geometry of the vessels studied presents three clearly differentiated regions, either in terms of thickness (11-15 mm) or concerning the inclination of the walls to the direction of manufacturing (0º - 45º). The experimental campaign carried out so far allows identifying the differences in behaviour when comparing different extraction locations around the vessel. This is due to the variations in thermal cycles that the deposited material undergoes during the manufacturing process. Therefore, this causes variations in the microstructure which lead to changes in the response of the material. In this work, these differences are analysed qualitatively and quantitatively from the results of FCGR and HCF, thus allowing to locate the regions with the highest risk in terms of structural integrity against fatigue. This preliminary phase together with the numerical simulation of the additive manufacturing process are key to achieving a reliable description and modelling of the material. The latter will make it possible to address the priority aim of this project, involving the manufacture of independent samples whose properties are representative of the original material extracted from the reference vessels. It is, therefore, a comprehensive methodology for the design of additively manufactured components based on the localised fatigue mechanical properties of representative specimens. T2 - ECF23, European Conference on Fracture 2022 CY - Funchal, Portugal DA - 27.06.2022 KW - Additive manufacturing KW - Steel 316L KW - Fracture Mechanics PY - 2022 AN - OPUS4-55240 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Blasón Gonzalez, Sergio A1 - Chaudry, Mohsin Ali A1 - Elorriaga, A. A1 - Madia, Mauro A1 - Llavori, I. A1 - Hilgenberg, Kai T1 - Diseño de componentes fabricados aditivamente basado en propiedades locales del material T1 - Design of additively manufactured components based on locally representative material fatigue properties N2 - La tecnología de fabricación aditiva (AM) continúan progresando y permitiendo alcanzar diseños cada vez más complejos y optimizados. La industria química es uno de los sectores donde componentes AM han adquirido un gran interés. La falta hasta la fecha de una directiva europea que regule la inspección, certificación y aceptación de equipos sometidos a presión hace necesario progresar en esta línea. El objetivo que se persigue en este trabajo es el de desarrollar una metodología de diseño sobre componentes fabricados aditivamente basada en la estimación de vida a fatiga de las zonas más susceptibles de sufrir dicho tipo de fallo. El estudio comprende diversas facetas de análisis, simulaciones numéricas, análisis de la microestructura del material y una extensa campaña experimental. La evaluación de la integridad estructural se realiza aplicando mecánica de fractura. La historia térmica a lo largo del proceso de fabricación determina la microestructura del componente en cada región y, por ende, influye en las propiedades mecánicas en cada una. Se presentan los resultados preliminares de un proyecto de investigación en curso dirigido a la caracterización de propiedades mecánicas en recipientes de presión producidos por fusión láser en lecho de polvo (L-PBF, por sus siglas en inglés) de acero inoxidable 316L. Se detallan los resultados preliminares en términos de velocidad de crecimiento de grietas por fatiga (FCGR), y se comparan los resultados de probetas extraídas de diferentes regiones de los depósitos. N2 - Additive manufacturing (AM) technology continues to make progress and allows for reaching increasingly complex and optimised designs. The chemical industry is one of the sectors where AM components have acquired relevance. There is a lack of any European directive in order to regulate the inspection, certification as well as acceptance of additively manufactured (AM) equipment subjected to pressure loads, so progression in this line becomes necessary. This work aimed to develop a design methodology for AM components based on the estimation of fatigue lifetime on those regions with a higher risk of failure. Diverse facets are involved in this study, including numerical simulations, microstructure analysis and an extensive experimental campaign. The fatigue assessment is performed based on fracture mechanics. The microstructure characteristics are dependent on the thermal history along the manufacturing process for each region and, accordingly, the mechanical properties are likewise influenced. Preliminary results of an ongoing research project for characterizing the mechanical properties in demonstrator pressure vessels produced by laser powder bed fusion (L-PBF) on stainless steel 316L are presented. The preliminary findings obtained in terms of fatigue crack growth rate (FCGR) and are detailed. Results from specimens extracted from different regions of the vessel are compared. T2 - 5th Iberian Conference on Structural Integrity IbCSI 2022 CY - Coimbra, Portugal DA - 30.03.2022 KW - Fabricación Aditiva KW - Additive Manufacturing KW - Acero 316L KW - Mecánica de Fractura KW - Predicción vida a fatiga KW - Fit4AM KW - Steel 316L KW - Fracture Mechanics KW - Fatigue lifetime prediction PY - 2022 AN - OPUS4-55241 LA - spa AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Blasón Gonzalez, Sergio A1 - Werner, Tiago A1 - Kruse, Julius A1 - Gilli, Daniel A1 - Madia, Mauro T1 - Experimental procedure for the determination of intrinsic fatigue crack propagation threshold ΔKth,eff and characterization of FCGR curves on miniature steel specimens N2 - The largest percentage of component life under fatigue loading conditions is spent in the short crack regime and in the initial phase of long cracks. The use of Fracture Mechanics in the characterization of fatigue crack growth rate curves has proven to be a useful and adequate tool in the prediction of fatigue lifetimes as long as certain conditions are satisfied. All the above implies the need for a methodical and accurate procedure of assessment of the material response in order to achieve a reliable prediction of lifetime in components under safe conditions, based on the damage tolerance approach. It also highlights the need to analyse the response of increasingly reduced thicknesses, which, as time goes by, show greater differences with respect to those commonly studied and defined in standards and design guidelines, as well as to the experimental studies that can be found in the literature at present. Some examples of thin-walled components are turbine blades or certain additively manufactured parts where, additionally, variations in material properties can occur locally and should also be examined. T2 - 2nd International Symposium on Notch Mechanics (2nd ISNM) CY - Madrid, Spain DA - 03.09.2020 KW - miniature specimens; FCGR curves; intrinsic threshold PY - 2021 SP - 1 EP - 2 AN - OPUS4-55242 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Cortabitarte, G. A1 - Llavori, I. A1 - Esnaola, J.A. A1 - Blasón Gonzalez, Sergio A1 - Larrañaga, M. A1 - Larrañaga, J. A1 - Arana, A. A1 - Ulacia, I. T1 - Application of the theory of critical distances for fatigue life assessment of spur gears N2 - This study evaluates the effectiveness of the theory of critical distances (TCD) method in determining the fatigue lifetime of a spur gear. A comprehensive characterization of the material parameters necessary for critical distance calculation was performed, including the fatigue limit and crack growth threshold, as well as σ-N and ε-N curves for 16MnCr5 steel. A variety of TCD methods were applied to analyse the component, including the point method, line method, volume method, and mesh control. The results indicate that overall, the TCD method is a reliable and accurate way to predict the fatigue lifetime of spur gears. The study reveals a strong correlation between predicted and experimental crack locations and fatigue lifetime, suggesting accurate prediction using TCD and the Smith-Watson-Topper parameter. Although all TCD methods, when applied correctly, yield similar results, mesh control is the faster method and is therefore more attractive from an industrial perspective. The results of this study provide valuable insight for engineers and researchers in the field of fatigue analysis of spur gears and similar mechanical components. KW - Spur gear KW - Theory of critical distances (TCD) KW - Multiaxial fatigue PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-624246 DO - https://doi.org/10.1016/j.tafmec.2023.104086 SN - 0167-8442 VL - 128 SP - 1 EP - 10 PB - Elsevier CY - Amsterdam AN - OPUS4-62424 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Blasón Gonzalez, Sergio A1 - Fernández-Canteli, A. A1 - Poveda, E. A1 - Ruiz, G. A1 - Yu, R. C. A1 - Castillo, E. T1 - Damage evolution and probabilistic strain-lifetime assessment of plain and fiber-reinforced concrete under compressive fatigue loading: Dual and integral phenomenological model N2 - A phenomenological approach is proposed to describe and predict the random behaviour of the total strain in plain and fiber concrete under compressive fatigue loading. Twofold viewpoints are considered in the assessment of the fatigue damage process. The first one, acknowledged as the stochastic cumulative damage evolution in terms of the number of applied cycles is represented by a sample function, physically identified with the total specimen strain caused by matrix microcracking. The second one is ascribed to the intrinsic scatter of the total lifetime referred to as the prefixed ultimate fatigue strain limit state (not necessarily failure). The sample function, once normalized to the total fatigue lifetime, is identified as a cumulative distribution function (cdf) of the generalized extreme value (GEV) family, particularly as Weibull distribution. Besides the reliable probabilistic lifetime prediction for the material under compressive fatigue, the approach allows fatigue tests to be prematurely interrupted while the remaining evolution of the ε-N curve up to failure is fully restored from the fragment recorded. In this way, a remarkable time and cost reduction of the experimental program is achieved without detriment of data reliability. KW - Prematurely interrupted tests KW - Fatigue damage KW - Cyclic creep curve KW - Lifetime normalization KW - Probabilistic lifetime prediction PY - 2022 DO - https://doi.org/10.1016/j.ijfatigue.2022.106739 SN - 0142-1123 VL - 158 SP - 1 EP - 20 PB - Elsevier Ltd. AN - OPUS4-55239 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fernádez-Canteli, A. A1 - Castillo, E. A1 - Blasón Gonzalez, Sergio T1 - A methodology for phenomenological analysis of cumulative damage processes. Application to fatigue and fracture phenomena N2 - Sample functions, i.e., stochastic process realizations, are used to define cumulative damage phenomena which end into an observable terminal state or failure. The complexity inherent to such phenomena justifies the use of phenomenological models associated with the evolution of a physical magnitude feasible to be monitored during the test. Sample functions representing the damage evolution may be identified, once normalized to the interval [0,1], with cumulative distribution functions (cdfs), generally, of the generalized extreme value (GEV) family. Though usually only a fraction of the whole damage evolution, according to the specific problem handled, is available from the test record, the phenomenological models proposed allow the whole damage process to be recovered. In this way, down- and upwards extrapolations of the whole damage process beyond the scope of the experimental program are provided as a fundamental tool for failure prediction in the practical design. The proposed methodology is detailed and its utility and generality confirmed by its successive application to representative well-known problems in fatigue and fracture characterization. The excellent fittings, the physical interpretation of the model parameters and the good expectations to achieve a complete probabilistic analysis of these phenomena justify the interest of the proposed phenomenological approach with possible applications to other cumulative damage processes. KW - Bayesian technique KW - Sample random results KW - Stochastic sample functions KW - Probabilistic assessment PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-552371 DO - https://doi.org/10.1016/j.ijfatigue.2021.106311 SN - 0142-1123 VL - 150 SP - 106311 PB - Elsevier Ltd. AN - OPUS4-55237 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Werner, Tiago A1 - Blasón Gonzalez, Sergio A1 - Madia, Mauro A1 - Kruse, Julius A1 - Benedetti, Matteo T1 - Determination of fatigue crack propagation thresholds using small-scale specimens N2 - The damage tolerance approach is widely used in the design and estimation of inspection intervals of safety-relevant metallic components subject to fatigue loading. The approach relies on the knowledge of the fatigue crack propagation characteristics, wherein a relevant role is played by the fatigue crack propagation threshold. Nevertheless, the use of material data determined by testing on conventional specimens is not straightforward in the case of thin-walled components such as turbine blades or additively manufactured parts, in which the local variation of material properties in highly stressed regions must be considered. In these cases, the possibility of investigating the fatigue crack propagation properties on a limited portion of material is crucial. For this purpose, a new test procedure has been developed for small-scale specimens which allows the determination of the intrinsic fatigue crack propagation threshold and the near-threshold regime. The validity and limitations of the method are demonstrated on the high strength steel S960QL, along with a comparison with data determined by testing on conventional geometries. T2 - FATIGUE DESIGN 2021 CY - Online meeting DA - 17.11.2021 KW - Fatigue crack propagation threshold KW - Small-scale specimens KW - High strength steel KW - Crack-tip constraint KW - Damage tolerance PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-544967 DO - https://doi.org/10.1016/j.prostr.2022.03.031 SN - 2452-3216 VL - 38 SP - 300 EP - 308 PB - Elsevier B.V. AN - OPUS4-54496 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -