TY - CONF A1 - Johann, Sergej A1 - Tiebe, Carlo A1 - Kohlhoff, Harald A1 - Bartholmai, Matthias T1 - Feasibility study for safe workplaces through automation and digitalization technology with redesigned smart sensors and lorawan monitoring system N2 - This project addresses the application of safe and healthy workplaces in offices, chemical laboratories and other workplaces where indoor air quality plays an important role. The LoRaWAN (Long Range Wide Area Network) is used as a communication interface to make sensor data globally accessible. The objectives of the project are to create a sensor node and an online and offline system that collects the data from the sensor nodes and stores it on a local server, in a cloud, and also locally on the node to prevent communication failures. An important point in this project is the development of the sensor nodes and the placement of these in the premises, thus no development work is involved in Building the infrastructure. T2 - SMSI 2021 CY - Online meeting DA - 03.05.2021 KW - Smart sensors KW - Air quality monitoring KW - LoRaWAN, KW - VOC KW - Multisensor system PY - 2021 AN - OPUS4-52650 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Johann, Sergej A1 - Tiebe, Carlo A1 - Kohlhoff, Harald A1 - Bartholmai, Matthias T1 - Feasibility Study for Safe Workplaces through automation and digitalization technology with redesigned Smart Sensors and LoRaWAN Monitoring System N2 - This project addresses the application of safe and healthy workplaces in offices, chemical laboratories and other workplaces where indoor air quality plays an important role. The LoRaWAN (Long Range Wide Area Network) is used as a communication interface to make sensor data globally accessible. The objectives of the project are to create a sensor node and an online and offline system that collects the data from the sensor nodes and stores it on a local server, in a cloud, and also locally on the node to prevent communication failures. An important point in this project is the development of the sensor nodes and the placement of these in the premises, thus no development work is involved in Building the infrastructure. T2 - SMSI 2021 CY - Online meeting DA - 03.05.2021 KW - Smart sensors KW - Air quality monitoring KW - LoRaWAN KW - VOC KW - Multisensor system PY - 2021 SP - 230 EP - 231 AN - OPUS4-52649 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Johann, Sergej A1 - Lapalus, Antoin A1 - Tiebe, Carlo A1 - Bartholmai, Matthias T1 - Design and Implementation of Smart Multisensor Monitoring System for Safe Workplaces with LoRaWAN N2 - This project addresses the application of safe workplaces in offices and chemical laboratories where indoor air quality plays an important role. The LoRaWAN (Long Range Wide Area Network) is used as a communication interface to make important sensor data globally accessible. The goal of the development is to create a sensor node and an online and offline solution that collects the data from the sensor nodes and stores it on a local server or in a cloud. In cooperation with the companies WISTA GmbH and IONOS, a test sensor network is going to be established in the Berlin-Adlershof area. T2 - SMSI 2020 CY - Meeting was canceled DA - 22.06.2020 KW - Smart sensors KW - Air quality monitoring KW - LoRaWAN KW - VOC KW - Multisensor system PY - 2020 U6 - https://doi.org/10.5162/SMSI2020/E5.4 SP - 388 EP - 389 AN - OPUS4-50878 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tiebe, Carlo A1 - Johann, Sergej A1 - Dessel, S. T1 - Prüfanweisung für Gassensoren N2 - Viele Sensoren sind auf dem Markt, die flüchtige organische Substanzen im Innenraum nicht nur messen, sondern gleichzeitig auch die Luftgüte bewerten. Damit diese Sensoren gute und vergleichbare Daten liefern, erarbeitet ein Fachausschuss der VDI/VDE-Gesellschaft Mess- und Automatisierungstechnik (GMA) eine neue VDI-Richtlinie. KW - VOC KW - Gassensor KW - Innenraumluft KW - IAQ KW - Richtlinie KW - Gasmesssystem PY - 2021 VL - 51 IS - 03-04 SP - 41 EP - 42 AN - OPUS4-52445 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Johann, Sergej A1 - Bartholmai, Matthias A1 - Neumann, Patrick P. A1 - Tiebe, Carlo A1 - Gawlitza, Kornelia A1 - Bartelmeß, Jürgen T1 - Adaptable multi-sensor device for gas detection N2 - Innovation is the catalyst for the technology of the future. It is important to develop new and better technologies that can continuously monitor the environmental impact, e.g., for air quality control or emission detection. In the recently at BAM developed Universal Pump Sensor Control (UPSC3) module, different components and sensors are fused. The combination of the individual components makes the UPSC3 module an excellent monitoring and reference system for the development and characterization of gas specific sensors. Measurements over long periods are possible, for mixed gas loads or for certain gas measurements. The system is part of a mobile sensor network of several sensor units, which can also be used as standalone systems. The motivation and objective of this research is to develop gas sensors based on fluorescence detection with range of ppm / ppb. For this task a reference system is required, which contains volatile organic compound (VOC) sensors for reference data from different scenarios. The integrated multi-sensor unit can measure different gases through the integrated 3-fold VOC sensor, which can be adapted to the addressed scenario. . The system-integrated flow control, with pump and flow sensor, allows the gas molecules to be transported directly to the VOC sensor. The entire measurement is permanently stored on an integrated memory card. If the previously determined limit range is exceeded, an alarm is generated. The system is an important tool towards further developments in the field of gas sensors and is primarily used for the validation of chemically based gas sensors. T2 - Colloquium of Optical Spectrometry (COSP) 2017 CY - Berlin, Germany DA - 27.11.2017 KW - Gas detection KW - Multi sensor device KW - Pump control KW - VOC PY - 2017 AN - OPUS4-43193 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Johann, Sergej A1 - Noske, Reinhard A1 - Feller, Viktor A1 - Bartholmai, Matthias ED - Vonau, Winfried ED - Cruvinel, P. ED - Chilibon, I. ED - Carvalho, V. ED - Sophocleous, M. T1 - Gas detection using a multi-sensor device with pump control and VOC sensor N2 - This paper deals with the development and investi-gation of a volatile organic compound (VOC) system for differ-ent scenarios. The integrated multi-sensor unit can detect dif-ferent gases through the integrated 3-fold VOC sensor, where-by a continuous measurement takes place. The system-integrated flow control, with pump and flow sensor, allows the gas molecules to be transported directly to the VOC sensor. The entire measurement is permanently stored on an integrat-ed Secure Digital (SD) card. If the previously determined limit range is exceeded, an alarm is generated. Due to the combina-tion of different components, numerous applications are possi-ble. The system is the first step or a tool towards further devel-opments in the field of gas sensors and is primarily used for the validation of chemically based gas sensors, and it is still largely extended by application-specific influences. T2 - Sensordevices 2017 - The Eighth International Conference on Sensor Device Technologies and Applications CY - Rome, Italy DA - 2017-09-10 KW - Gas detection KW - VOC KW - Pump control KW - Multi sensor device PY - 2017 SN - 978-1-61208-581-4 SP - 1 EP - 4 CY - Rome, Italy AN - OPUS4-42097 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Johann, Sergej A1 - Noske, Reinhard A1 - Feller, Viktor A1 - Bartholmai, Matthias T1 - Gas detection using a multi-sensor device with pump control and VOC sensor N2 - This paper deals with the development and investi-gation of a volatile organic compound (VOC) system for differ-ent scenarios. The integrated multi-sensor unit can detect dif-ferent gases through the integrated 3-fold VOC sensor, where-by a continuous measurement takes place. The system-integrated flow control, with pump and flow sensor, allows the gas molecules to be transported directly to the VOC sensor. The entire measurement is permanently stored on an integrat-ed Secure Digital (SD) card. If the previously determined limit range is exceeded, an alarm is generated. Due to the combina-tion of different components, numerous applications are possi-ble. The system is the first step or a tool towards further devel-opments in the field of gas sensors and is primarily used for the validation of chemically based gas sensors, and it is still largely extended by application-specific influences. T2 - Sensordevices 2017 - The Eighth International Conference on Sensor Device Technologies and Applications CY - Rome, Italy DA - 2017-09-10 KW - Gas detection KW - VOC KW - Pump control KW - Multi sensor device PY - 2017 AN - OPUS4-42098 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -