TY - CONF A1 - Thöns, Sebastian A1 - McMillan, D. T1 - Condition monitoring benefit for offshore wind turbines T2 - PMAPS 2012 - 12th International conference on Probabilistic Methods Applied to Power Systems CY - Istanbul, Turkey DA - 2012-06-10 KW - Condition monitoring KW - Offshore wind KW - Operation KW - Risk KW - Life cycle KW - Cost KW - Cost benefit analysis KW - Offshore wind turbine KW - Operation management KW - Structural integrity management PY - 2012 SP - 37 EP - 42 AN - OPUS4-26117 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Thöns, Sebastian A1 - Faber, M.H. A1 - Rücker, Werner T1 - Fatigue and serviceability limit state model basis for assessment of offshore wind energy converters N2 - This paper develops the models for the structural performance of the loading and probabilistic characterization for the fatigue and the serviceability limit states for the support structure of offshore wind energy converters. These models and a sensitivity study are part of a risk based assessment and monitoring framework and will be applied for establishing the 'as designed and constructed' reliability as prior information for the assessment and the design of monitoring systems. The constitutive physical equations are introduced in combination with the fatigue and serviceability limit state requirements as the starting point for the development of the structural performance and loading models. With these models introduced in detail, several modeling aspects for both limit states are analyzed. This includes analyses of the influence on the hot spot stresses by applying a contact formulation for the pile guide brace connection and the application of a finite element formulation using solid elements. Further, the comparison of the natural frequencies of a discrete rotor model with a continuous rotor model is documented. To account for uncertainties associated with the structural and loading models, a probabilistic model is derived on the basis of literature review and measurement data from a prototype Multibrid M5000 support structure. The sensitivity study is based on the calculation of a nonlinear coefficient of correlation in conjunction with predetermined designs of experiments. This is conducted by a systematic analysis of the influence of the random variables on limit state responses and hence on the structural reliability. Integrating the analyses and sensitivity studies of the fatigue and serviceability limit state models developed in this paper as well as the ultimate limit state models in Thöns et al. ('Ultimate Limit State Model Basis for Assessment of Offshore Wind Energy Converters,' ASME J. Offshore Mech. Arct. Eng.), the model basis for the assessment is completed. The process of establishing and analyzing such a model basis contributes to a detailed understanding of the deterministic and probabilistic characteristics of the structure and provides valuable insights in regard to the significance of available data. KW - Fatigue KW - Finite element analysis KW - Rotors KW - Wind power PY - 2012 DO - https://doi.org/10.1115/1.4004514 SN - 0892-7219 VL - 134 IS - 3 SP - 031905-1 - 031905-10 CY - Fairfield, NJ AN - OPUS4-26437 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schneider, Ronald A1 - Thöns, Sebastian A1 - Straub, D. ED - Strauss, A. ED - Frangopol, D.M. ED - Bergmeister, K. T1 - Reliability-based inspection planning with application to orthotropic bridge deck structures subjected to fatigue N2 - A reliability-based approach to inspection planning for welded steel structures subjected to high cycle fatigue is presented in the current document. Inspections are an effective means to control the Progress of fatigue deterioration and the presented approach allows to determine the minimum required inspection effort so that the considered structure complies with the given risk acceptance criteria in terms of target reliability throughout its service life. T2 - 3rd International symposium on life-cycle civil engineering CY - Vienna, Austria DA - 03.10.2012 PY - 2012 SN - 978-0-415-62126-7 SP - 311 EP - 318 PB - CRC Press AN - OPUS4-27068 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Thöns, Sebastian A1 - Rücker, Werner A1 - Faber, M.H. T1 - Support structure reliability of offshore wind turbines utilizing an adaptive response surface method T2 - OMAE 2010 - 29th International conference on ocean, offshore and arctic engineering CY - Shanghai, China DA - 2010-06-06 PY - 2010 IS - OMAE2010-20546 SP - 1 EP - 10 AN - OPUS4-21666 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rohrmann, Rolf A1 - Thöns, Sebastian A1 - Rücker, Werner T1 - Integrated monitoring of offshore wind turbines - requirements, concepts and experiences N2 - Wind turbines on offshore sites (OWECs) are subjected to combined loads from wind and waves. These dynamic loads, with a frequency content within the range of the natural frequencies of the structures, cause fatigue-effective stresses in the substructures of wind turbines. Therefore, the examination of natural frequencies is an important part within the design process of wind turbines. The quality of the numerical models for such calculations is of great importance, since the certification guidelines permit only small uncertainties in modal analysis results. The accuracy of the parameters of the numerical model can only be achieved through a comparison of simulation results with corresponding test results. Therefore, it is necessary to measure the dynamic behaviour of all components of the wind turbines simultaneously. This is true not only for the design verification, but also for monitoring the OWECs in operation. The potential of integrated systems for monitoring-based maintenance optimisation should thus be used. KW - Offshore wind turbines KW - Integrated monitoring system KW - Structural assessment KW - Damage indicators KW - Dynamic loads KW - Data management PY - 2010 DO - https://doi.org/10.1080/15732470903068706 SN - 1573-2479 SN - 1744-8980 VL - 6 IS - 5 SP - 575 EP - 591 PB - Taylor & Francis CY - London AN - OPUS4-21452 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -