TY - JOUR A1 - Zhang, W.-H. A1 - Qin, J. A1 - Lu, D.-G. A1 - Thöns, Sebastian A1 - Havbro Faber, M. T1 - Vol-informed decision-making for SHM system arrangement N2 - Structural health monitoring systems have been widely implemented to provide real-time continuous data support and to ensure structural safety in the context of structural integrity management. However, the quantification of the potential benefits of structural health monitoring systems has not yet attracted widespread attention. At the same time, there is an urgent need to develop strategies, such as optimizing the monitoring period, monitoring variables, and other factors, to maximize the potential benefits of structural health monitoring systems. Considering the continuity of structural health monitoring information, a framework is developed in this article to support decision-making for structural Health monitoring systems arrangement in the context of structural integrity management, which integrates the concepts of value of information and risk-based inspection planning based on an approach which utilizes a conjugate prior probability distribution for updating of the probabilistic models of structural performances based on structural health Monitoring information. An example considering fatigue degradation of steel structures is investigated to illustrate the application of the proposed framework. The considered example shows that the choice of monitoring variables, the Monitoring period, and the monitoring quality may be consistently optimized by the application of the proposed framework and approach. Finally, discussions and conclusions are provided to clarify the potential benefits of the proposed Framework with a special view to practical applications of structural health monitoring systems. KW - Value of information KW - Structural health monitoring systems arrangement strategy KW - Structural integrity management KW - Rskbased inspection KW - Structural health monitoring information model PY - 2020 DO - https://doi.org/10.1177/1475921720962736 SN - 1475-9217 VL - 21 IS - 1 SP - 37 EP - 58 PB - SAGE Journals CY - USA AN - OPUS4-53064 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Thöns, Sebastian A1 - Döhler, M. A1 - Long, Lijia T1 - On Damage Detection System Information for Structural Systems N2 - Damage detection systems (DDS) provide information of the structural system integrity in contrast to e.g. local information by inspections or non-destructive testing techniques. In this paper, an approach is developed and demonstrated to utilize DDS information to update the structural system reliability and to integrate this information in structural system risk and utility analyses. For this aim, a novel performance modelling of DDS building upon their system characteristics and non-destructive testing reliability is introduced. The DDS performance modelling accounts for a measurement system in combination with a damage detection algorithm attached to a structural system in the reference and damage states and is modelled with the probability of indication accounting for type I and II errors. In this way, the basis for DDS performance comparison and assessment is provided accounting for the dependencies between the damage states in a structure. For updating of the structural system reliability, an approach is developed based on Bayesian updating facilitating the use of DDS information on structural system level and thus for a structural system risk analysis. The structural system risk analysis encompasses the static, dynamic, deterioration, reliability and consequence models, which provide the basis for the system model for calculating the direct risks due to component failure and the indirect risks due to system failure. Two case studies with the developed approach demonstrate a high Value of DDS Information due to risk and expected cost reduction. KW - Damage detection KW - Value of Information KW - Structural systems KW - Damage detection uncertainty PY - 2018 DO - https://doi.org/10.1080/10168664.2018.1459222 VL - 28 IS - 3 SP - 255 EP - 268 PB - Taylor & Francis AN - OPUS4-46964 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Thöns, Sebastian A1 - Faber, M. H. A1 - Rücker, Werner T1 - Ultimate limit state model basis for assessment of offshore wind energy converters N2 - This paper establishes the model basis regarding the ultimate limit state consisting of structural, loading, and probabilistic models of the support structure of offshore wind energy converters together with a sensitivity study. The model basis is part of a risk based assessment and monitoring framework and will be applied for establishing the 'as designed and constructed' reliability as prior information for the assessment and as a basis for designing a monitoring system. The model basis is derived considering the constitutive physical equations and the methodology of solving these which then in combination with the ultimate limit state requirements leads to the specific constitutive relations. As a result finite element models based on shell elements incorporating a structural and a loading model are introduced and described in detail. Applying these models the ultimate capacity of the support structure and the tripod structure are determined with a geometrically and materially nonlinear finite element analysis. The observed failure mechanisms are the basis for the definition of the ultimate limit state responses. A probabilistic model accounting for the uncertainties involved is derived on the basis of literature review and measurement data from a prototype Multibrid M5000 support structure. In combination with the developed structural and loading models, sensitivity analyses in regard to the responses are performed to enhance the understanding and to refine the developed models. To this end, as the developed models necessitate substantial numerical efforts for the probabilistic response analysis predetermined designs of numerical experiments are applied for the calculation of the sensitivities using the Spearman rank correlation coefficient. With this quantification of the sensitivity of the random variables on the responses including nonlinearity the refinement of the model is performed on a quantitative basis. KW - Condition monitoring KW - Failure analysis KW - Finite element analysis KW - Offshore installations KW - Probability KW - Risk analysis KW - Shells (structures) KW - Structural engineering KW - Wind power KW - Model basis KW - Offshore wind KW - Support structure KW - Sensitivity KW - Ultimate limit state PY - 2012 DO - https://doi.org/10.1115/1.4004513 SN - 0892-7219 VL - 134 IS - 3 SP - 1 EP - 9 PB - American Society of Mechanical Engineers (ASME) CY - New York, NY AN - OPUS4-26358 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Long, Lijia A1 - Döhler, M. A1 - Thöns, Sebastian T1 - Determination of structural and damage detection system influencing parameters on the value of information N2 - A method to determine the influencing parameters of a structural and damage detection system is proposed based on the value of Information analysis. The value of information analysis utilizes the Bayesian pre-posterior decision theory to quantify the value of damage detection system for the structural integrity management during service life. First, the influencing parameters of the structural system, such as deterioration type and rate are introduced for the performance of the prior probabilistic system model. Then the influencing parameters on the damage detection system performance, including number of sensors, sensor locations, measurement noise, and the Type-I error are investigated. The preposterior probabilistic model is computed utilizing the Bayes’ theorem to update the prior system model with the damage indication information. Finally, the value of damage detection system is quantified as the difference between the maximum utility obtained in pre-posterior and prior analysis based on the decision tree analysis, comprising structural probabilistic models, consequences, as well as benefit and costs analysis associated with and without monitoring. With the developed approach, a case study on a statically determinate Pratt truss bridge girder is carried out to validate the method. The analysis shows that the deterioration rate is the most sensitive parameter on the effect of relative value of information over the whole service life. Furthermore, it shows that more sensors do not necessarily lead to a higher relative value of information; only specific sensor locations near the highest utilized components lead to a high relative value of information; measurement noise and the Type-I error should be controlled and be as small as possible. An optimal sensor employment with highest relative value of information is found. Moreover, it is found that the proposed method can be a powerful tool to develop optimal service life maintenance strategies—before implementation—for similar bridges and to optimize the damage detection system settings and sensor configuration for minimum expected Costs and risks. KW - Damage detection systems KW - Value of information KW - Deteriorating structures KW - Probability of damage indication KW - Decision theory PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-508083 DO - https://doi.org/10.1177/1475921719900918 SN - 1475-9217 SN - 1741-3168 VL - 21 IS - 1 SP - 19 EP - 36 PB - Sage Publications CY - Thousand Oaks, Calif. AN - OPUS4-50808 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Long, Lijia A1 - Alcover, I. F. A1 - Thöns, Sebastian T1 - Utility analysis for SHM durations and service life extension of welds on steel bridge deck N2 - Optimization of the duration of Structural Health Monitoring (SHM) campaigns is rarely performed. This article provides a utility-based solution to posteriorly determine: i) optimal monitoring Durations and ii) the extension of the service life of the welds on a steel bridge deck. The approach is Illustrated with a case study focusing on remaining fatigue life estimation of the welds on the orthotropic steel deck of the Great Belt Bridge, in Denmark. The identification of the optimal monitoring duration and the decision about extending the service life of the welds are modelled by maximizing the expected benefits and minimizing the structural risks. The results are a parametric analysis, mainly on the effect of the target probability, benefit, cost of failure, cost of rehabilitation, cost of monitoring and Discount rate on the posterior utilities of monitoring strategies and the choice of service life considering the risk variability and the costs and benefits models. The results show that the decision on short-term monitoring, i.e., 1 week every six months, is overall the most valued SHM strategy. In addition, it is found that the target probability is the most sensitive parameter affecting the optimal SHM Durations and service life extension of the welds. KW - Fatigue KW - Monitoring strategy KW - Orthotropic steel deck KW - Structural health monitoring KW - Utility and decision theory PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-521719 DO - https://doi.org/10.1080/15732479.2020.1866026 SN - 1573-2479 VL - 18 IS - 4 SP - 492 EP - 504 PB - Taylor Francis Online AN - OPUS4-52171 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Long, Lijia A1 - Anh Mai, Q. A1 - Morato, P. G. A1 - Dalsgaard Sorensen, J. A1 - Thöns, Sebastian T1 - Information value-based optimization of structural and environmental monitoring for offshore wind turbines support structures N2 - The use of load and structural performance measurement information is vital for efficient structural integrity management and for the cost of energy production with Offshore Wind Turbines (OWTs). OWTs are dynamically sensitive structures subject to an interaction with a control unit exposed to repeated cyclic wind and wave loads causing deterioration and fatigue. This study focuses on the quantification of the value of structural and environmental information on the integrity management of OWT structures, with the focus on fatigue of welded joints. By utilizing decision analysis, structural reliability methods, measurement data, as well as the cost-benefit models, a Value of Information (VoI) analysis can be performed to quantify the most beneficial measurement strategy. The VoI assessment is demonstrated for the integrity management of a butt welded joint of a monopile support structure for a 3 MW OWT with a hub height of approximately 71m. The conditional value of three-year measured oceanographic information and one-year strain monitoring information is quantified posteriori in conjunction with an inspection and repair planning. This paper provides insights on how much benefits can be achieved through structural and environmental information, with practical relevance on reliability-based maintenance of OWT structures. KW - Structural health monitoring KW - Offshore wind turbine KW - Monopile support structure KW - Value of information KW - Weld fatigue KW - Decision tree KW - Dynamic Bayesian Network PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-514098 DO - https://doi.org/10.1016/j.renene.2020.06.038 VL - 10 IS - 159 SP - 1036 EP - 1046 PB - Elsevier Ltd. AN - OPUS4-51409 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Thöns, Sebastian A1 - Faber, M. H. A1 - Rücker, Werner T1 - Fatigue and serviceability limit state model basis for assessment of offshore wind energy converters N2 - This paper develops the models for the structural performance of the loading and probabilistic characterization for the fatigue and the serviceability limit states for the support structure of offshore wind energy converters. These models and a sensitivity study are part of a risk based assessment and monitoring framework and will be applied for establishing the 'as designed and constructed' reliability as prior information for the assessment and the design of monitoring systems. The constitutive physical equations are introduced in combination with the fatigue and serviceability limit state requirements as the starting point for the development of the structural performance and loading models. With these models introduced in detail, several modeling aspects for both limit states are analyzed. This includes analyses of the influence on the hot spot stresses by applying a contact formulation for the pile guide brace connection and the application of a finite element formulation using solid elements. Further, the comparison of the natural frequencies of a discrete rotor model with a continuous rotor model is documented. To account for uncertainties associated with the structural and loading models, a probabilistic model is derived on the basis of literature review and measurement data from a prototype Multibrid M5000 support structure. The sensitivity study is based on the calculation of a nonlinear coefficient of correlation in conjunction with predetermined designs of experiments. This is conducted by a systematic analysis of the influence of the random variables on limit state responses and hence on the structural reliability. Integrating the analyses and sensitivity studies of the fatigue and serviceability limit state models developed in this paper as well as the ultimate limit state models in Thöns et al. ('Ultimate Limit State Model Basis for Assessment of Offshore Wind Energy Converters,' ASME J. Offshore Mech. Arct. Eng.), the model basis for the assessment is completed. The process of establishing and analyzing such a model basis contributes to a detailed understanding of the deterministic and probabilistic characteristics of the structure and provides valuable insights in regard to the significance of available data. KW - Fatigue KW - Finite element analysis KW - Rotors KW - Wind power KW - Model basis KW - Offshore wind KW - Support structure KW - Sensitivity KW - Serviceability PY - 2012 DO - https://doi.org/10.1115/1.4004514 SN - 0892-7219 VL - 134 IS - 3 SP - 1 EP - 10 PB - American Society of Mechanical Engineers (ASME) CY - New York, NY AN - OPUS4-26437 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kapoor, M. A1 - Overgaard Christensen, Ch. A1 - Wittrup Schmidt, J. A1 - Dalsgaard Sørensen, J. A1 - Thöns, Sebastian T1 - Decision analytic approach for the reclassification of concrete bridges by using elastic limit information from proof loading N2 - Reclassification of bridges, i.e., a change in load rating, using reliability-based methods and a direct update with proof load information has been presented by many authors. However, bridge reclassification has hardly been studied from a decision analytic perspective, i.e., with quantification of the risks and benefits of different classification choices, and the expected benefit gain from proof loading. We derive, explain and exemplify a decision analytic approach for bridge reclassification along with models for (1) elastic and ultimate capacity and their adaptation with proof load information, (2) proof load information with classification outcomes accounting for target reliabilities and, (3) utilities including socio-economic benefits from reclassification. The approach and models are exemplified with a case study based on reclassification of bridges with a low existing classification. Decision rules, for practical use by a highway authority to find the optimal classification, are identified and documented based on: (1) the measurement of the capacity at elastic limit by proof loading, (2) the bridge reclassification benefits, and, (3) the required annual reliability level. From a Value of Information analysis, it is concluded that the proof load information is highly valuable for reclassification in cases of high socio-economic benefits and high reliability requirements. KW - Proof loading KW - Structural reliability KW - Value of information KW - Decision analysis PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-596845 DO - https://doi.org/10.1016/j.ress.2022.109049 SN - 0951-8320/ VL - 232 SP - 1 EP - 16 PB - Elsevier Ltd. AN - OPUS4-59684 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kinne, Marko A1 - Thöns, Sebastian T1 - Fatigue Reliability Based on Predicted Posterior Stress Ranges Determined from Strain Measurements of Wind Turbine Support Structures N2 - In the present paper, an approach for updating the continuous stress range distribution of a welded connection of a wind turbine support structure with predicted information from strain measurements is presented. Environmental conditions, such as wind or, in offshore fields, waves and currents, in combination with rotor excitations generate cyclic stresses affecting the reliability of welded joints of the support structure over the service life. Using strain measurements, these conditions can be monitored, and the resulting stress ranges, under consideration of measurement, mechanical and material uncertainties, can be reconstructed. These stress ranges can be used as an input for updating the prior probability density function (PDF) of the stress ranges predicted by the overall dynamics and a detailed design analysis. Applying Bayesian probability theory and decision theoretical implications, the predicted posterior probability density of the stress ranges is calculated based on the design information and uncertainties. This approach is exemplified, and it is shown how the predicted stress ranges and the design stress ranges are distributed. The prior and the predicted posterior stress ranges are used for a reliability calculation for potentially entering a pre-posterior decision analysis KW - Strain measurements of wind turbine support structures KW - Bayesian updating of stress ranges KW - Posterior fatigue reliability PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-572663 DO - https://doi.org/10.3390/en16052225 VL - 16 IS - 5 SP - 1 EP - 26 PB - MDPI AN - OPUS4-57266 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schneider, Ronald A1 - Thöns, Sebastian A1 - Straub, Daniel T1 - Reliability analysis and updating of deteriorating systems with subset simulation N2 - An efficient approach to reliability analysis of deteriorating structural systems is presented, which considers stochastic dependence among element deterioration. Information on a deteriorating structure obtained through inspection or monitoring is included in the reliability assessment through Bayesian updating of the system deterioration model. The updated system reliability is then obtained through coupling the updated deterioration model with a probabilistic structural model. The underlying high-dimensional structural reliability problems are solved using subset simulation, which is an efficient and robust sampling-based algorithm suitable for such analyses. The approach is demonstrated in two case studies considering a steel frame structure and a Daniels system subjected to high-cycle fatigue. KW - Structural reliability KW - Deterioration KW - Bayesian analysis KW - Inspection KW - Monitoring KW - Subset simulation PY - 2017 DO - https://doi.org/10.1016/j.strusafe.2016.09.002 SN - 0167-4730 SN - 1879-3355 VL - 64 SP - 20 EP - 36 PB - Elsevier AN - OPUS4-38218 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -