TY - CONF A1 - Rohrmann, Rolf A1 - Said, Samir A1 - Schmid, Wolfgang A1 - Thöns, Sebastian A1 - Bicker, S. A1 - Rücker, Werner ED - De Roeck, G. ED - Degrande, G. ED - Lombaert, G. ED - Müller, G. T1 - Results from monitoring and assessment of offshore wind turbines T2 - EURODYN 2011 - 8th International conference on structural dynamics (Proceedings) N2 - To ensure a high operational reliability of offshore wind turbines (OWEC) with economically acceptable repair and maintenance efforts, comprehensive diagnosis and supervision concepts are required. Automatic monitoring Systems will be an essential part of such concepts. Because of the fact, that during Operation there will be static and dynamic interaction between the components ‘structure’, ‘machinery’ and ‘blades’ it is necessary to develop the monitoring techniques in an overall concept. These monitoring Systems are supposed to be applied for the design and testing as well as for the Operation and maintenance phases. The knowledge of the dynamic behavior of wind turbines is important both for the design and for a safe Operation. The available monitoring data from a period of three years, allow first conclusions on the long-term Operation of such Systems in terms of quality requirements to the instrumentation to the structure and the rotor blades T2 - EURODYN 2011 - 8th International conference on structural dynamics CY - Leuven, Belgium DA - 04.07.2011 KW - Integrated monitoring system KW - Offshore wind turbines KW - Structural assessment KW - Limit values KW - Measurement hardware KW - Data management KW - Embedded FBG sensors KW - Data analysis KW - Damage detection KW - Rotor blades PY - 2011 SN - 978-90-760-1931-4 IS - MS25 SP - 3450 EP - 3456 AN - OPUS4-24293 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Long, Lijia A1 - Thöns, Sebastian A1 - Döhler, M. T1 - Damage Detection and Deteriorating Structural Systems T2 - Proceedings of the 11th International Workshop on Structural Health Monitoring N2 - This paper addresses the quantification of the value of damage detection system and algorithm information on the basis of Value of Information (VoI) analysis to enhance the benefit of damage detection information by providing the basis for its optimization before it is performed and implemented. The approach of the quantification the value of damage detection information builds upon the Bayesian decision theory facilitating the utilization of damage detection performance models, which describe the information and its precision on structural system level, facilitating actions to ensure the structural integrity and facilitating to describe the structural system performance and its functionality throughout the service life. The structural system performance is described with its functionality, its deterioration and its behavior under extreme loading. The structural system reliability given the damage detection information is determined utilizing Bayesian updating. The damage detection performance is described with the probability of indication for different component and system damage states taking into account type 1 and type 2 errors. The value of damage detection information is then calculated as the difference between the expected benefits and risks utilizing the damage detection information or not. With an application example of the developed approach based on a deteriorating Pratt truss system, the value of damage detection information is determined,demonstrating the potential of risk reduction and expected cost reduction. T2 - International Workshop on Structural Health Monitoring CY - Stanford, CA, USA DA - 12.09.2017 KW - Reliability updating KW - Structural reliability and risks KW - Damage detection KW - Value of information PY - 2017 SN - 978-1-60595-330-4 SP - 1276 EP - 1284 AN - OPUS4-43624 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -