TY - JOUR A1 - Hu, Wei-Hua A1 - Thöns, Sebastian A1 - Rohrmann, Rolf A1 - Said, Samir A1 - Rücker, Werner T1 - Vibration-based structural health monitoring of a wind turbine system. Part I: Resonance phenomenon N2 - This paper is focused on a resonance phenomenon of a wind turbine system in 5 MW class, on the basis of dynamic signals acquired continuously from the tubular tower under normal operational conditions during two years. Firstly, technique specifications of the wind turbine system are introduced and a finite element model is developed to characterize the structural dynamic properties. The following part describes the continuous dynamic monitoring system integrated with an automated operational modal analysis procedure using the poly-reference Least Squares Complex Frequency domain (p-LSCF) method. Subsequently, variations and mutual relationships of environmental/operational factors such as vibration amplitude, temperature, wind speed, rotation speed of blades, pitch angle and nacelle direction are also presented. Finally, significant resonance is observed due to the fundamental frequency of the tower matching with the harmonic frequency induced by the rotation of three blades. As the rotation speed of rotor approaches to 8 rpm, the vibration amplitude of the tower increases significantly and the corresponding damping value decreases. With the further rising wind velocity, the rotation speed of blades stops increasing and the input energy just contribute to accumulate the vibration amplitude of tower. Such observation indicates the Sommerfeld effect that aggravates the resonance phenomenon. A vibration control device is necessary to minimize the excessive structural responses. A companion paper will further discuss the environmental/operational effects on dynamic properties of the wind turbine system under the operational conditions. KW - Vibration KW - Structural health monitoring KW - Wind turbine KW - Automated operational modal analysis KW - Resonance KW - Sommerfeld effect PY - 2015 U6 - https://doi.org/10.1016/j.engstruct.2014.12.034 SN - 0141-0296 VL - 89 SP - 260 EP - 272 PB - Elsevier Ltd. CY - Oxford AN - OPUS4-32878 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hu, Wei-Hua A1 - Thöns, Sebastian A1 - Rohrmann, Rolf A1 - Said, Samir A1 - Rücker, Werner T1 - Vibration-based structural health monitoring of a wind turbine system. Part II: Environmental/operational effects on dynamic properties N2 - The second part of these companion papers mainly researches environmental/operational influences on structural dynamic properties under normal operational conditions during two years, in order to extract a statistical based damage-sensitive indicator for health monitoring of a wind turbine system. The correlation analyses between experimental identified frequencies, damping values as well as mode shapes and environmental/operational factors such as rotation speed of blades, wind speed, pitch angle, temperature and nacelle direction are presented. It is observed that the frequency estimates are influenced by the nacelle position, the activation of rotor, the rotation speed of blades and the wind speed as well as the temperature. Regarding to the damping estimates, they are mainly associated with variation of the aerodynamic damping due to the increasing wind speed. Besides, the resonance phenomenon is also observed in higher modes. The harmonic frequencies due to blades passing by tower are found and the corresponding damping value decreases. Moreover, the mode shapes in some modes are strongly affected by the position of the nacelle. Subsequently, two types of simulated damage including the reduction of stiffness in both the rotor blade and the tubular tower are successfully detected by applying the Principal Component Analysis (PCA) based methods to these temperature-sensitive frequency estimates. Comparison of change of the extracted health features indicates that they are more sensitive with the tower damage. KW - Vibration KW - Structural health monitoring KW - Wind turbine KW - Environmental/operational effects KW - Modal properties KW - Principal Component Analysis KW - Novelty analysis KW - Damage detection KW - Sommerfeld effect KW - Automated operational modal analysis KW - Resonance PY - 2015 U6 - https://doi.org/10.1016/j.engstruct.2014.12.035 SN - 0141-0296 VL - 89 SP - 273 EP - 290 PB - Elsevier Ltd. CY - Oxford AN - OPUS4-32879 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hu, Wei-Hua A1 - Thöns, Sebastian A1 - Said, Samir A1 - Rücker, Werner ED - Cunha, A. ED - Caetano, E. ED - Ribeiro, P. ED - Müller, G. T1 - Resonance phenomenon in a wind turbine system under operational conditions N2 - A prototype of wind turbines in 5 megawatt dass was built and tested at the first German offshore wind energy test fteld in the North Sea. In order to investigate dynamic behaviors under a complex state of loads, a continuous dynamic monitoring System was implemented by Federal Institute for Material Research and Testing (BAM). It recorded structural responses and environmental/operational variables from November 2007 to October 2009. This paper presents significant resonance phenomenon due to the interaction in the tower-nacelle System under operational conditions. Modal parameters are automatically estimated by the poly reference Least Square Complex Frequency domain (p-LSCF) method. Campbell plot demonstrates that a three-blade passage frequency and its multiples f3n match with the natural frequencies of the wind turbine System in several modal Orders. The damping estimates decrease and the Vibration amplitude increase significantly. A control System is necessary to minimize the excessive vibrations. T2 - EURODYN 2014 - 9th International conference on structural dynamics CY - Porto, Portugal DA - 30.06.2014 KW - Wind turbine KW - Tower-nacelle system KW - Resonance KW - Continuous dynamic monitoring KW - Automated operational modal analysis PY - 2014 SN - 978-972-752-165-4 SN - 2311-9020 SP - 3619 EP - 3626 AN - OPUS4-32970 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -