TY - CONF A1 - Long, Lijia A1 - Thöns, Sebastian A1 - Döhler, M. T1 - The effects of SHM system parameters on the value of damage detection information N2 - This paper addresses how the value of damage detection Information depends on key Parameters of the Structural Health Monitoring (SHM) system including number of sensors and sensor locations. The Damage Detection System (DDS) provides the information by comparing ambient vibration measurements of a (healthy) reference state with measurements of the current structural system. The performance of DDS method depends on the physical measurement properties such as the number of sensors, sensor positions, measuring length and sensor type, measurement noise, ambient excitation and sampling frequency, as well as on the data processing algorithm including the chosen type I error for the indication threshold. The quantification of the value of Information (VoI) is an expected utility based Bayesian decision analysis method for quantifying the difference of the expected economic benefits with and without information. The (pre-)posterior probability is computed utilizing the Bayesian updating theorem for all possible indications. If changing any key parameters of DDS, the updated probability of system failure given damage detection information will be varied due to different indication of probability of damage, which will result in changes of value of damage detection information. The DDS system is applied in a statically determinate Pratt truss bridge girder. Through the analysis of the value of information with different SHM system characteristics, the settings of DDS can be optimized for minimum expected costs and risks before implementation. T2 - 9th European Workshop on Structural Health Monitoring CY - Manchester, UK DA - 10.07.2018 KW - SHM KW - Damage detection system KW - Value of information PY - 2018 SP - 375 EP - 384 AN - OPUS4-46190 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Thöns, Sebastian A1 - Rücker, Werner A1 - Faber, M.H. T1 - Support structure reliability of offshore wind turbines utilizing an adaptive response surface method T2 - OMAE 2010 - 29th International conference on ocean, offshore and arctic engineering CY - Shanghai, China DA - 2010-06-06 PY - 2010 IS - OMAE2010-20546 SP - 1 EP - 10 AN - OPUS4-21666 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Thöns, Sebastian A1 - Döhler, M. ED - Del Grosso, A.E. ED - Basso, P. T1 - Structural reliability updating with stochastic subspace damage detection information T2 - EACS 2012 - Smart structures - 5th European conference on structural control CY - Genoa, Italy DA - 2012-06-18 KW - Stochastic subspace KW - Structural reliability KW - Bayesian updating KW - Probability od detection PY - 2012 SN - 978-88-95023-13-7 IS - Paper #008 SP - 1 EP - 12 PB - Erredi Grafiche Editoriali AN - OPUS4-26181 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rohrmann, Rolf A1 - Thöns, Sebastian A1 - Rücker, Werner A1 - Bicker, S. A1 - Said, Samir A1 - Schmid, Wolfgang T1 - Structural investigations and monitoring results on a prototype of offshore wind turbines of multibrid M5000 series N2 - The concept and technical details of the implementation of the developed integrated monitoring system within the IMO-WIND project are presented. The tasks of the components of the system and its requirements are described. Selected results from the continuous monitoring during operation of the plant M5000_2 regarding the task design verification and dynamic structural analysis are given. T2 - DEWEK 2010 - 10th German wind energy conference CY - Bremen, Germany DA - 2010-11-17 KW - Integrated monitoring system KW - Offshore wind turbines KW - Design verification KW - Structural assessment KW - Limit values KW - Load transfer KW - Data management KW - Dynamic analysis KW - Rotor blades KW - Embedded sensors PY - 2011 IS - S03 SP - 1 EP - 5 PB - DEWI GmbH AN - OPUS4-23712 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Grasse, Fabian A1 - Trappe, Volker A1 - Thöns, Sebastian A1 - Said, Samir ED - De Roeck, G. ED - Degrande, G. ED - Lombaert, G. ED - Müller, G. T1 - Structural health monitoring of wind turbine blades by strain measurement and vibration analysis N2 - Wind turbine blades have to withstand a high number of load cycles in mostly hard weather conditions over 20 years. In a research project BAM and several partners have designed, evaluated and tested a condition monitoring system for all parts of a wind turbine. At a rotorblade with a length of 58 m fibre bragg grating sensors were applied for in-service strain measurement. Additionally a complex test rig was designed to enable real biaxial loading conditions at a representative test rotor blade to simulate the mechanical loading conditions in the lab. In this test blade with a length of 8 m also fibre bragg grating sensors were implemented to determine their influences for the structure and the condition monitoring system. Vibration measurements were carried out at different test phases. The results were compared with finite element strain and modal analysis. T2 - EURODYN 2011 - 8th International conference on structural dynamics CY - Leuven, Belgium DA - 04.07.2011 KW - Rotor blade KW - Test blade KW - Modal analysis KW - Condition monitoring PY - 2011 SN - 978-90-760-1931-4 IS - MS25 Tue SP - 3490 EP - 3497 AN - OPUS4-25076 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schneider, Ronald A1 - Thöns, Sebastian A1 - Rogge, Andreas ED - Bucher, Christian ED - Ellingwood, Bruce R. ED - Frangopol, Dan M. T1 - Simulating the service life performance of an inspected group of jacket-type structures N2 - A novel method for risk-based optimization of inspection and repair strategies for deteriorating structural systems has recently been proposed. The method defines heuristics at the system level to reduce the number of possible strategies. For each defined strategy, it computes the updated system failure probability conditional on simulated inspection and repair histories, and evaluates the associated costs and risk. The expected total service life costs and risk for a strategy are finally determined using Monte Carlo simulation. The optimal strategy minimizes the expected total service life costs and risk. We intend to adopt this approach to optimize inspection, monitoring and repair activities for offshore wind park support structures. As a first step, we simulate – in analogy to an offshore wind park – the service life performance of an inspected group of jacket-type frames. The performance is quantified in terms of the group’s system failure probability conditional on simulated inspection and repair histories. The underlying system model accounts for the structural redundancy of the frames and the interdependence among their failure events due to similar loading conditions. The model also captures stochastic dependence among the deterioration states of the frames. As part of the simulation process the a-priori unknown outcome of any planned inspection is generated conditional on the outcome of all previous inspections. T2 - 12th International Conference on Structural Safety and Reliability CY - Vienna, Austria DA - 06.08.2017 KW - Reliability KW - Fatigue KW - Inspection KW - Service life performance KW - Inspection planning PY - 2017 SN - 978-3-903024-28-1 SP - 2738 EP - 2747 PB - TU-MV Media Verlag GmbH CY - Vienna, Austria AN - OPUS4-41344 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rücker, Werner A1 - Thöns, Sebastian A1 - Said, Samir A1 - Schmid, Wolfgang ED - Zingoni, A. T1 - SHM strategies, application and measurements on tripod offshore wind energy converters within the German offshore park Alpha Ventus N2 - Prototypes of wind turbines of the megawatt dass are to be built and tested until 2008 within a German offshore wind energy test field in the North Sea (ALPHA VENTUS). To ensure a high operational reliability of offshore wind turbines with economically acceptable repair and maintenance efforts, comprehensive diagnosis and supervision concepts are required. Automatic monitoring Systems will be an essential part of such concepts. Because of the fact, that during Operation there will be static and dynamic interaction between the components ‘structure’, ‘machinery’ and ‘blades’ it is necessary to develop the monitoring techniques in an overall concept. These monitoring Systems are supposed to be applied for the design and testing as well as for the Operation and maintenance phases. In the paper the developed approaches for the measurement of actions and the condition monitoring of all components of an offshore wind energy plant will be shown. T2 - Research and applications in structural engineering, mechanics and computation - 5th International conference on structural engineering, mechanics and computation CY - Cape Town, South Africa DA - 02.09.2013 PY - 2013 SN - 978-1-138-00061-2 SN - 978-1-315-85078-8 SP - 977 EP - 982 PB - CRC Press AN - OPUS4-29104 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Thöns, Sebastian A1 - Lanata, F. ED - Deodatis, G. ED - Ellingwood, B.R. ED - Frangopol, D.M. T1 - Risk and operation optimized damage detection and inspection systems T2 - 11th International conference on structural safety and reliability - Safety, reliability, risk and life-cycle performance of structures and infrastructures CY - New York, USA DA - 16.06.2013 PY - 2013 SN - 978-1-138-00086-5 SN - 978-1-315-88488-2 SP - 1 EP - 10 PB - CRC Press CY - Leiden, The Netherlands AN - OPUS4-28729 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Berchtold, Florian A1 - Knaust, Christian A1 - Rogge, Andreas A1 - Arnold, L. A1 - Thöns, Sebastian ED - Lönnermark, Anders ED - Ingason, Haukur T1 - Risk Analysis for Road Tunnels – A Metamodel to Efficiently Integrate Complex Fire Scenarios N2 - Fires in road tunnels constitute complex scenarios with interactions between the fire, tunnel users and safety measures. More and more methodologies for risk analysis quantify the consequences of these scenarios with complex models. Examples for complex models are the computational fluid dynamics model Fire Dynamics Simulator (FDS) and the microscopic evacuation model FDS+Evac. However, the high computational effort of complex models often limits the number of scenarios in practice. To balance this drawback, the scenarios are often simplified. Accordingly, there is a challenge to consider complex scenarios in risk analysis. To face this challenge, we improved the metamodel used in the methodology for risk analysis presented on ISTSS 2016. In general, a metamodel quickly interpolates the consequences of few scenarios simulated with the complex models to a large number of arbitrary scenarios used in risk analysis. Now, our metamodel consists of the projection array-based design, the moving least squares method, and the prediction interval to quantify the metamodel uncertainty. Additionally, we adapted the projection array-based design in two ways: the focus of the sequential refinement on regions with high metamodel uncertainties; and the combination of two experimental designs for FDS and FDS+Evac. To scrutinise the metamodel, we analysed the effects of three sequential refinement steps on the metamodel itself and on the results of risk analysis. We observed convergence in both after the second step (ten scenarios in FDS, 192 scenarios in FDS+Evac). In comparison to ISTSS 2016, we then ran 20 scenarios in FDS and 800 scenarios in FDS+Evac. Thus, we reduced the number of scenarios remarkably with the improved metamodel. In conclusion, we can now efficiently integrate complex scenarios in risk analysis. We further emphasise that the metamodel is broadly applicable on various experimental or modelling issues in fire safety engineering. T2 - International Symposium on Tunnel Safety and Security CY - Boras, Sweden DA - 14.03.2018 KW - Risk KW - Metamodel KW - CFD KW - Evacuation KW - Uncertainty PY - 2018 SN - 978-91-88695-48-2 VL - 8 SP - 349 EP - 360 AN - OPUS4-44535 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Thöns, Sebastian A1 - Rücker, Werner T1 - Risikobasierte Überwachungsverfahren zur Lebensdauerverlängerung von bestehenden und neuen Bauwerken T1 - Risk based condition monitoring for life cycle extension of structures N2 - Diese Veröffentlichung enthält Konzepte zur Lebensdauerverlängerung von Bauwerken auf der Grundlage der Tragwerkszuverlässigkeitstheorie. Es werden aktuelle Forschungsergebnisse aus nationalen und europäischen Forschungsvorhaben vorgestellt. Den Schwerpunkt bildet die Verwendung von Bauwerksüberwachungsdaten unter Berücksichtigung von Messunsicherheiten zur Bestimmung der Tragwerkszuverlässigkeit. Dazu wird ein neuer Ansatz zur Bestimmung der A-posteriori Messunsicherheit vorgestellt. Es wird gezeigt, aufgrund welcher Eigenschaften der verwendeten probabilistischen Modelle die Zuverlässigkeit im Grenzzustand der Ermüdung in Bezug auf eine Lebensdauerverlängerung beeinflusst werden kann. N2 - This paper contains approaches aiming at the life cycle extension of structures on the basis of the structural reliability theory. Actual research results are presented with the focusing on the utilisation of monitoring data for the structural reliability analysis. In this context a framework for the determination of the posterior measurement uncertainty applying Bayesian Updating the process equation based measurement uncertainty with the Observation based measurement uncertainty is introduced. The general concepts for the utilisation of monitoring data and inspection data for updating the structural reliability in the view of life cycle extension are outlined. The characteristics of monitoring data in the context of the structural reliability theory are shown in detail on the basis of an example. T2 - DVM-Tag 2011 - Bauteilzuverlässigkeit - Schäden und ihre Vermeidung CY - Berlin, Germany DA - 04.05.2011 KW - Lebensdauerverlängerung KW - Tragwerkszuverlässigkeit KW - Messunsicherheit KW - Bauwerksüberwachung KW - Life cycle extension KW - Structural reliability KW - Measurement uncertainty KW - Structural monitoring PY - 2011 SN - 0946-5987 N1 - Serientitel: DVM-Bericht – Series title: DVM-Bericht IS - 678 SP - 1 EP - 10 AN - OPUS4-23720 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -