TY - CONF A1 - Grasse, Fabian A1 - Trappe, Volker A1 - Thöns, Sebastian A1 - Said, Samir ED - De Roeck, G. ED - Degrande, G. ED - Lombaert, G. ED - Müller, G. T1 - Structural health monitoring of wind turbine blades by strain measurement and vibration analysis T2 - EURODYN 2011 - 8th International conference on structural dynamics (Proceedings) N2 - Wind turbine blades have to withstand a high number of load cycles in mostly hard weather conditions over 20 years. In a research project BAM and several partners have designed, evaluated and tested a condition monitoring system for all parts of a wind turbine. At a rotorblade with a length of 58 m fibre bragg grating sensors were applied for in-service strain measurement. Additionally a complex test rig was designed to enable real biaxial loading conditions at a representative test rotor blade to simulate the mechanical loading conditions in the lab. In this test blade with a length of 8 m also fibre bragg grating sensors were implemented to determine their influences for the structure and the condition monitoring system. Vibration measurements were carried out at different test phases. The results were compared with finite element strain and modal analysis. T2 - EURODYN 2011 - 8th International conference on structural dynamics CY - Leuven, Belgium DA - 04.07.2011 KW - Rotor blade KW - Test blade KW - Modal analysis KW - Condition monitoring PY - 2011 SN - 978-90-760-1931-4 IS - MS25 Tue SP - 3490 EP - 3497 AN - OPUS4-25076 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Thöns, Sebastian A1 - McMillan, D. ED - Karki, R. ED - Billinton, R. ED - Vermar, A.K. T1 - Condition monitoring benefit for operation support of offshore wind turbines T2 - Reliability modeling and analysis of smart power systems N2 - As more offshore wind parks are commissioned, the focus will inevitably shift from a planning, construction, and warranty focus to an operation, maintenance, and investment payback focus. In this latter case, both short-term risks associated with wind turbine component assemblies, and long-term risks related to integrity of the support structure, are highly important. This research focuses on the role of condition monitoring to lower costs and risks associated with short-term reliability and long-term asset integrity. This enables comparative estimates of the life cycle costs and reduction in uncertainty, both of which are of value to investors. KW - Condition monitoring KW - Offshore wind KW - OperationRisk KW - Life cycle cost PY - 2014 SN - 978-81-322-1797-8 SN - 978-81-322-1798-5 DO - https://doi.org/10.1007/978-81-322-1798-5_11 N1 - Serientitel: Reliable and sustainable electric power and energy systems management – Series title: Reliable and sustainable electric power and energy systems management SP - 169 EP - 182 PB - Springer AN - OPUS4-31275 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -