TY - GEN A1 - Farhan, Muhammad A1 - Schneider, Ronald A1 - Thöns, Sebastian T1 - Corrigendum to Predictive information and maintenance optimization based on decision theory: a case study considering a welded joint in an offshore wind turbine support structure N2 - This article has been revised and republished due to substantial changes to the text of the original article, as published Online First on January 31, 2021. Most of the change were minor grammatical changes. The following changes are more significant and will be highlighted below. KW - Integrity management KW - Decision theory KW - Value of information KW - Structural reliability KW - Fracture mechanics KW - Fatigue KW - Predictive maintenance KW - Wind turbine support structure PY - 2022 U6 - https://doi.org/10.1177/14759217211040385 SN - 1475-9217 VL - 21 IS - 4 SP - 1956 EP - 1956 PB - Sage Publications CY - London AN - OPUS4-55165 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Farhan, Muhammad A1 - Schneider, Ronald A1 - Thöns, Sebastian T1 - Predictive information and maintenance optimization based on decision theory: a case study considering a welded joint in an offshore wind turbine support structure N2 - Predictive information and maintenance optimization for deteriorating structures is concerned with scheduling (a) the collection of information by inspection and monitoring and (b) maintenance actions such as repair, replacement, and retrofitting based on updated predictions of the future condition of the structural system. In this article, we consider the problem of jointly identifying—at the beginning of the service life—the optimal inspection time and repair strategy for a generic welded joint in a generic offshore wind turbine structure subject to fatigue. The optimization is performed based on different types of decision analyses including value of information analyses to quantify the expected service life cost encompassing inspection, repair, and fatigue damage for all relevant combinations of inspection time, repair method, and repair time. Based on the analysis of the expected service life cost, the optimal inspection time, repair method, and repair time are identified. Possible repair methods for a welded joint in an offshore environment include welding and grinding, for which detailed models are formulated and utilized to update the joint’s fatigue performance. The decision analyses reveal that an inspection should be scheduled approximately at mid-service life of the welded joint. A repair should be performed in the same year after an indication and measurement of a fatigue crack given an optimal inspection scheduling. This article concludes with a discussion on the results obtained from the decision and value of information analyses. KW - Integrity management KW - Value of information KW - Decision theory KW - Structural reliability KW - Fracture mechanics KW - Fatigue KW - Predictive maintenance KW - Wind turbine support structure PY - 2021 U6 - https://doi.org/10.1177/1475921720981833 SN - 1475-9217 SN - 1741-3168 PB - Sage Publications CY - London AN - OPUS4-52771 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -