TY - GEN A1 - Farhan, Muhammad A1 - Schneider, Ronald A1 - Thöns, Sebastian T1 - Corrigendum to Predictive information and maintenance optimization based on decision theory: a case study considering a welded joint in an offshore wind turbine support structure N2 - This article has been revised and republished due to substantial changes to the text of the original article, as published Online First on January 31, 2021. Most of the change were minor grammatical changes. The following changes are more significant and will be highlighted below. KW - Integrity management KW - Decision theory KW - Value of information KW - Structural reliability KW - Fracture mechanics KW - Fatigue KW - Predictive maintenance KW - Wind turbine support structure PY - 2022 U6 - https://doi.org/10.1177/14759217211040385 SN - 1475-9217 VL - 21 IS - 4 SP - 1956 EP - 1956 PB - Sage Publications CY - London AN - OPUS4-55165 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zhang, W.-H. A1 - Qin, J. A1 - Lu, D.-G. A1 - Thöns, Sebastian A1 - Havbro Faber, M. T1 - Vol-informed decision-making for SHM system arrangement N2 - Structural health monitoring systems have been widely implemented to provide real-time continuous data support and to ensure structural safety in the context of structural integrity management. However, the quantification of the potential benefits of structural health monitoring systems has not yet attracted widespread attention. At the same time, there is an urgent need to develop strategies, such as optimizing the monitoring period, monitoring variables, and other factors, to maximize the potential benefits of structural health monitoring systems. Considering the continuity of structural health monitoring information, a framework is developed in this article to support decision-making for structural Health monitoring systems arrangement in the context of structural integrity management, which integrates the concepts of value of information and risk-based inspection planning based on an approach which utilizes a conjugate prior probability distribution for updating of the probabilistic models of structural performances based on structural health Monitoring information. An example considering fatigue degradation of steel structures is investigated to illustrate the application of the proposed framework. The considered example shows that the choice of monitoring variables, the Monitoring period, and the monitoring quality may be consistently optimized by the application of the proposed framework and approach. Finally, discussions and conclusions are provided to clarify the potential benefits of the proposed Framework with a special view to practical applications of structural health monitoring systems. KW - Value of information KW - Structural health monitoring systems arrangement strategy KW - Structural integrity management KW - Rskbased inspection KW - Structural health monitoring information model PY - 2020 U6 - https://doi.org/10.1177/1475921720962736 SN - 1475-9217 VL - 21 IS - 1 SP - 37 EP - 58 PB - SAGE Journals CY - USA AN - OPUS4-53064 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Long, Lijia A1 - Alcover, I. F. A1 - Thöns, Sebastian T1 - Utility analysis for SHM durations and service life extension of welds on steel bridge deck N2 - Optimization of the duration of Structural Health Monitoring (SHM) campaigns is rarely performed. This article provides a utility-based solution to posteriorly determine: i) optimal monitoring Durations and ii) the extension of the service life of the welds on a steel bridge deck. The approach is Illustrated with a case study focusing on remaining fatigue life estimation of the welds on the orthotropic steel deck of the Great Belt Bridge, in Denmark. The identification of the optimal monitoring duration and the decision about extending the service life of the welds are modelled by maximizing the expected benefits and minimizing the structural risks. The results are a parametric analysis, mainly on the effect of the target probability, benefit, cost of failure, cost of rehabilitation, cost of monitoring and Discount rate on the posterior utilities of monitoring strategies and the choice of service life considering the risk variability and the costs and benefits models. The results show that the decision on short-term monitoring, i.e., 1 week every six months, is overall the most valued SHM strategy. In addition, it is found that the target probability is the most sensitive parameter affecting the optimal SHM Durations and service life extension of the welds. KW - Fatigue KW - Monitoring strategy KW - Orthotropic steel deck KW - Structural health monitoring KW - Utility and decision theory PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-521719 SN - 1573-2479 VL - 18 IS - 4 SP - 492 EP - 504 PB - Taylor Francis Online AN - OPUS4-52171 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Farhan, Muhammad A1 - Schneider, Ronald A1 - Thöns, Sebastian T1 - Predictive information and maintenance optimization based on decision theory: a case study considering a welded joint in an offshore wind turbine support structure N2 - Predictive information and maintenance optimization for deteriorating structures is concerned with scheduling (a) the collection of information by inspection and monitoring and (b) maintenance actions such as repair, replacement, and retrofitting based on updated predictions of the future condition of the structural system. In this article, we consider the problem of jointly identifying—at the beginning of the service life—the optimal inspection time and repair strategy for a generic welded joint in a generic offshore wind turbine structure subject to fatigue. The optimization is performed based on different types of decision analyses including value of information analyses to quantify the expected service life cost encompassing inspection, repair, and fatigue damage for all relevant combinations of inspection time, repair method, and repair time. Based on the analysis of the expected service life cost, the optimal inspection time, repair method, and repair time are identified. Possible repair methods for a welded joint in an offshore environment include welding and grinding, for which detailed models are formulated and utilized to update the joint’s fatigue performance. The decision analyses reveal that an inspection should be scheduled approximately at mid-service life of the welded joint. A repair should be performed in the same year after an indication and measurement of a fatigue crack given an optimal inspection scheduling. This article concludes with a discussion on the results obtained from the decision and value of information analyses. KW - Integrity management KW - Value of information KW - Decision theory KW - Structural reliability KW - Fracture mechanics KW - Fatigue KW - Predictive maintenance KW - Wind turbine support structure PY - 2021 U6 - https://doi.org/10.1177/1475921720981833 SN - 1475-9217 SN - 1741-3168 PB - Sage Publications CY - London AN - OPUS4-52771 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kinne, Marko A1 - Schneider, Ronald A1 - Thöns, Sebastian T1 - Reconstructing Stress Resultants in Wind Turbine Towers Based on Strain Measurements N2 - Support structures of offshore wind turbines are subject to cyclic stresses generated by different time-variant random loadings such as wind, waves, and currents in combinationwith the excitation by the rotor. In the design phase, the cyclic demand on wind turbine support structure is calculated and forecasted with semi or fully probabilistic engineering models. In some cases, additional cyclic stresses may be induced by construction deviations, unbalanced rotor masses and structural dynamic phenomena such as, for example, the Sommerfeld effect. Both, the significant uncertainties in the design and a validation of absence of unforeseen adverse dynamic phenomena necessitate the employment of measurement Systems on the support structures. The quality of the measurements of the cyclic demand on the support structures depends on (a) the precision of the measurement System consisting of sensors, amplifier and data normalization and (b) algorithms for analyzing and converting data to structural health information. This paper presents the probabilistic modelling and analysis of uncertainties in strain measurements performed for the purposes of reconstructing stress resultants in wind turbine towers. It is shown how the uncertainties in the strain measurements affect the uncertainty in the individual components of the reconstructed forces and moments. The analysis identifies the components of the vector of stress resultants that can be reconstructed with sufficient precision. T2 - International Conference on Uncertainty in Mechanical Engineering - ICUME CY - Online meeting DA - 07.06.2021 KW - Reconstruction of stress resultants KW - Strain measurements KW - Bayesian updating of measurement uncertainties PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-527987 SP - 224 EP - 235 PB - Springer AN - OPUS4-52798 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Berchtold, Florian A1 - Knaust, Christian A1 - Rogge, Andreas A1 - Arnold, L. A1 - Thöns, Sebastian ED - Lönnermark, Anders ED - Ingason, Haukur T1 - Risk Analysis for Road Tunnels – A Metamodel to Efficiently Integrate Complex Fire Scenarios N2 - Fires in road tunnels constitute complex scenarios with interactions between the fire, tunnel users and safety measures. More and more methodologies for risk analysis quantify the consequences of these scenarios with complex models. Examples for complex models are the computational fluid dynamics model Fire Dynamics Simulator (FDS) and the microscopic evacuation model FDS+Evac. However, the high computational effort of complex models often limits the number of scenarios in practice. To balance this drawback, the scenarios are often simplified. Accordingly, there is a challenge to consider complex scenarios in risk analysis. To face this challenge, we improved the metamodel used in the methodology for risk analysis presented on ISTSS 2016. In general, a metamodel quickly interpolates the consequences of few scenarios simulated with the complex models to a large number of arbitrary scenarios used in risk analysis. Now, our metamodel consists of the projection array-based design, the moving least squares method, and the prediction interval to quantify the metamodel uncertainty. Additionally, we adapted the projection array-based design in two ways: the focus of the sequential refinement on regions with high metamodel uncertainties; and the combination of two experimental designs for FDS and FDS+Evac. To scrutinise the metamodel, we analysed the effects of three sequential refinement steps on the metamodel itself and on the results of risk analysis. We observed convergence in both after the second step (ten scenarios in FDS, 192 scenarios in FDS+Evac). In comparison to ISTSS 2016, we then ran 20 scenarios in FDS and 800 scenarios in FDS+Evac. Thus, we reduced the number of scenarios remarkably with the improved metamodel. In conclusion, we can now efficiently integrate complex scenarios in risk analysis. We further emphasise that the metamodel is broadly applicable on various experimental or modelling issues in fire safety engineering. T2 - International Symposium on Tunnel Safety and Security CY - Boras, Sweden DA - 14.03.2018 KW - Risk KW - Metamodel KW - CFD KW - Evacuation KW - Uncertainty PY - 2018 SN - 978-91-88695-48-2 VL - 8 SP - 349 EP - 360 AN - OPUS4-44535 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Thöns, Sebastian T1 - On the Value of Monitoring Information for the Structural Integrity and Risk Management N2 - This article introduces an approach and framework for the quantification of the value of structural health monitoring (SHM) in the context of the structural risk and integrity management for systems. The quantification of the value of SHM builds upon the Bayesian decision and utility theory, which facilitates the assessment of the value of information associated with SHM. The principal approach for the quantification of the value of SHM is formulated by modeling the fundamental decision of performing SHM or not in conjunction with their expected utilities. The expected utilities are calculated accounting for the probabilistic performance of a system in conjunction with the associated structural integrity and risk management actions throughout the life cycle, the associated benefits, structural risks, and costs and when performing SHM, the SHM information, their probabilistic outcomes, and costs. The calculation of the expected utilities necessitates a comprehensive and rigorous modeling, which is introduced close to the original formulations and for which analysis characteristics and simplifications are described and derived. The framework provides the basis for the optimization of the structural risk and integrity management based on utility gains including or excluding SHM and inspection information. Studies of fatigue deteriorating structural Systems and their characteristics (1) provide decision Support for the performance of SHM, (2) explicate the influence of the structural component and system characteristics on the value of SHM, and (3) demonstrate how an integral optimization of SHM and inspection strategies for an efficient structural risk and integrity management can be performed. KW - Monitoring KW - Structural Integrity and Risk Management KW - SHM PY - 2018 U6 - https://doi.org/10.1111/mice.12332 VL - 33 IS - 1 SP - 79 EP - 94 PB - John Wiley & Sons, Inc. CY - Hoboken, NJ, USA AN - OPUS4-44537 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Long, Lijia A1 - Döhler, M. A1 - Thöns, Sebastian T1 - Determination of structural and damage detection system influencing parameters on the value of information N2 - A method to determine the influencing parameters of a structural and damage detection system is proposed based on the value of Information analysis. The value of information analysis utilizes the Bayesian pre-posterior decision theory to quantify the value of damage detection system for the structural integrity management during service life. First, the influencing parameters of the structural system, such as deterioration type and rate are introduced for the performance of the prior probabilistic system model. Then the influencing parameters on the damage detection system performance, including number of sensors, sensor locations, measurement noise, and the Type-I error are investigated. The preposterior probabilistic model is computed utilizing the Bayes’ theorem to update the prior system model with the damage indication information. Finally, the value of damage detection system is quantified as the difference between the maximum utility obtained in pre-posterior and prior analysis based on the decision tree analysis, comprising structural probabilistic models, consequences, as well as benefit and costs analysis associated with and without monitoring. With the developed approach, a case study on a statically determinate Pratt truss bridge girder is carried out to validate the method. The analysis shows that the deterioration rate is the most sensitive parameter on the effect of relative value of information over the whole service life. Furthermore, it shows that more sensors do not necessarily lead to a higher relative value of information; only specific sensor locations near the highest utilized components lead to a high relative value of information; measurement noise and the Type-I error should be controlled and be as small as possible. An optimal sensor employment with highest relative value of information is found. Moreover, it is found that the proposed method can be a powerful tool to develop optimal service life maintenance strategies—before implementation—for similar bridges and to optimize the damage detection system settings and sensor configuration for minimum expected Costs and risks. KW - Damage detection systems KW - Value of information KW - Deteriorating structures KW - Probability of damage indication KW - Decision theory PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-508083 SN - 1475-9217 SN - 1741-3168 VL - 21 IS - 1 SP - 19 EP - 36 PB - Sage Publications CY - Thousand Oaks, Calif. AN - OPUS4-50808 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bayane, I. A1 - Long, Lijia A1 - Thöns, Sebastian A1 - Brühwiler, E. T1 - Quantification of the conditional value of SHM data for the fatigue safety evaluation of a road viaduct N2 - Fatigue safety verification of existing bridges that uses ‘‘re-calculation’’ based on codes, usually results in insufficient fatigue safety, triggering invasive interventions. Instead of “re-calculation”, Structural Health Monitoring (SHM) should be used for the assessment of the existing bridges. Monitoring systems provide data that can reduce uncertainties associated with the fatigue loading process and the structural resistance. The objective of this paper is to quantify the value of the SHM system implemented in a 60-years-old road viaduct to investigate its fatigue safety, through modeling of the fundamental decisions of performing monitoring in conjunction with its expected utility. The quantification of the conditional value of information is based on the decision tree analysis that considers the structural reliability, various decision scenarios as well as the cost-benefit assessments. This leads to a quantitative decision basis for the owner about how much time and money can be saved while the viaduct fulfills its function reliably and respects the safety requirements. The originality of this paper stands in the application of the value of information theory to an existing viaduct considering the fatigue failure of the system based on the monitoring data and the cost-benefit of monitoring method. T2 - 13th International Conference on Applications of Statistics and Probability in Civil Engineering CY - Seoul, South Korea DA - 26.05.2019 KW - Fatigue safety KW - Value of information PY - 2019 SP - 275 EP - 288 CY - Seoul, South Korea AN - OPUS4-50809 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Thöns, Sebastian A1 - Stewart, M. G. T1 - On the cost-efficiency, significance and effectiveness of terrorism risk reduction strategies for buildings N2 - We analyse the performance of risk reduction strategies for Terrorist attacks with Improvised Explosive Devices (IEDs) for large governmental building structures in terms of cost-efficiency, significance and effectiveness Accounting for life safety in conjunction with societal preferences and capabilities. The approach builds upon an extended Bayesian pre-posterior decision analysis and the principles of the marginal lifesaving costs based on the Life Quality Index (LQI). The decision scenario is formulated for a decision maker responsible for the safety of governmental or large commercial buildings and consequently the direct risks, the indirect risks due to fatalities and economical importance of the building beside the expected cost for the individual risk reduction strategies are modelled, aggregated and optimised. The considered risk reduction strategies encompass an explicit consideration and distinction of information and actions such as (i) threat surveillance may trigger the temporary evacuation of the building, (ii) the implementation of protection provisions provided by codes and guidelines, (iii) a detailed progressive collapse assessment and specific protection measures and (iv) the combination of protection and surveillance. All considered strategies are found to contribute to risk reduction and can be costefficient, especially for higher threat probabilities. The risk reduction strategies comply with societal macroeconomic and demographical characteristics and societal preferences according to the LQI. The progressive collapse assessment with targeted protection measures is found to be the most cost-efficient, significant and effective counter-terrorism strategy. This finding points to the necessity for a comprehensive utilisation of scientific methods and sophisticated engineering for progressive collapse assessment to determine targeted protection measures. KW - Significance and effectiveness KW - Risk mitigation strategies KW - Terrorist attacks KW - Value of information KW - Bayesian probability KW - Reliability KW - Risk and decision analysis KW - Decision optimality PY - 2020 U6 - https://doi.org/10.1016/j.strusafe.2020.101957 VL - 85 SP - 10195 PB - Elsevier Ltd. AN - OPUS4-50794 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -