TY - CONF A1 - Thöns, Sebastian A1 - Döhler, M. ED - Del Grosso, A.E. ED - Basso, P. T1 - Structural reliability updating with stochastic subspace damage detection information T2 - EACS 2012 - Smart structures - 5th European conference on structural control CY - Genoa, Italy DA - 2012-06-18 KW - Stochastic subspace KW - Structural reliability KW - Bayesian updating KW - Probability od detection PY - 2012 SN - 978-88-95023-13-7 IS - Paper #008 SP - 1 EP - 12 PB - Erredi Grafiche Editoriali AN - OPUS4-26181 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Long, Lijia A1 - Thöns, Sebastian A1 - Döhler, M. T1 - Damage Detection and Deteriorating Structural Systems N2 - This paper addresses the quantification of the value of damage detection system and algorithm information on the basis of Value of Information (VoI) analysis to enhance the benefit of damage detection information by providing the basis for its optimization before it is performed and implemented. The approach of the quantification the value of damage detection information builds upon the Bayesian decision theory facilitating the utilization of damage detection performance models, which describe the information and its precision on structural system level, facilitating actions to ensure the structural integrity and facilitating to describe the structural system performance and its functionality throughout the service life. The structural system performance is described with its functionality, its deterioration and its behavior under extreme loading. The structural system reliability given the damage detection information is determined utilizing Bayesian updating. The damage detection performance is described with the probability of indication for different component and system damage states taking into account type 1 and type 2 errors. The value of damage detection information is then calculated as the difference between the expected benefits and risks utilizing the damage detection information or not. With an application example of the developed approach based on a deteriorating Pratt truss system, the value of damage detection information is determined,demonstrating the potential of risk reduction and expected cost reduction. T2 - International Workshop on Structural Health Monitoring CY - Stanford, CA, USA DA - 12.09.2017 KW - Reliability updating KW - Structural reliability and risks KW - Damage detection KW - Value of information PY - 2017 SN - 978-1-60595-330-4 SP - 1276 EP - 1284 AN - OPUS4-43624 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Long, Lijia A1 - Thöns, Sebastian A1 - Döhler, M. T1 - The effects of SHM system parameters on the value of damage detection information N2 - This paper addresses how the value of damage detection Information depends on key Parameters of the Structural Health Monitoring (SHM) system including number of sensors and sensor locations. The Damage Detection System (DDS) provides the information by comparing ambient vibration measurements of a (healthy) reference state with measurements of the current structural system. The performance of DDS method depends on the physical measurement properties such as the number of sensors, sensor positions, measuring length and sensor type, measurement noise, ambient excitation and sampling frequency, as well as on the data processing algorithm including the chosen type I error for the indication threshold. The quantification of the value of Information (VoI) is an expected utility based Bayesian decision analysis method for quantifying the difference of the expected economic benefits with and without information. The (pre-)posterior probability is computed utilizing the Bayesian updating theorem for all possible indications. If changing any key parameters of DDS, the updated probability of system failure given damage detection information will be varied due to different indication of probability of damage, which will result in changes of value of damage detection information. The DDS system is applied in a statically determinate Pratt truss bridge girder. Through the analysis of the value of information with different SHM system characteristics, the settings of DDS can be optimized for minimum expected costs and risks before implementation. T2 - 9th European Workshop on Structural Health Monitoring CY - Manchester, UK DA - 10.07.2018 KW - SHM KW - Damage detection system KW - Value of information PY - 2018 SP - 375 EP - 384 AN - OPUS4-46190 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -