TY - JOUR A1 - Brüske, H. A1 - Thöns, Sebastian T1 - Value of pre‐construction proof loading information for structural design N2 - We introduce a new concept that enables a decision analyst to explore and quantify the benefits of decision alternatives that exceed the scope of a pre‐posterior decision or value of information analysis. This new concept, namely, the expected value of sample information and action analysis, facilitates to examine decision alternatives that become only possible with additional knowledge. The concept is introduced by taking basis in proof load testing as a source of (pre‐)posterior knowledge. Pre‐posterior decision analysis is necessary in order to optimize the structural design through proof loading information. The application of the common value of information Analysis and the new value of information and action analysis are demonstrated in a case study. KW - Value of information and action KW - Pre‐construction proof loading KW - Pre‐posterior decision analysis KW - Structural design optimization PY - 2019 U6 - https://doi.org/10.1002/we.2398 SN - 1095-4244 SP - 1 EP - 17 PB - John Wiley & Sons AN - OPUS4-48804 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Faber, M.H. A1 - Thöns, Sebastian ED - Miraglia, S. ED - Vrouwenvelder, A.C.W.M. ED - Steenbergen, R.D.J.M. ED - Van Gelder, P.H.A.J.M. T1 - On the value of structural health monitoring T2 - 22nd ESREL conference - Safety, reliability and risk analysis: Beyond the horizon CY - Amsterdam, The Netherlands DA - 2013-09-29 PY - 2014 SN - 978-1-138-00123-7 SP - 2535 EP - 2544 PB - Taylor & Francis AN - OPUS4-29894 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Faber, M.H. A1 - Thöns, Sebastian A1 - Narasimhan, H. A1 - Schubert, M. T1 - Risikobasierter Ansatz zur Bewertung der Robustheit von Bauwerken N2 - Ziel des vorliegenden Beitrages ist es, einen Überblick über die aktuellen Entwicklungen im Bereich der Bewertung und der Quantifizierung der Robustheit von Bauwerken zu geben. In diesem Sinne ist eine Zusammenstellung von Ansätzen und Ergebnissen aktueller Veröffentlichungen enthalten. Ein umfassender entscheidungstheoretischer Ansatz für die Berechnung und das Management der Robustheit wird vorgestellt. Dieser beinhaltet die Definition der Robustheit als eine Qualität eines Systems, welches das Bauwerk beinhaltet, d. h. eine Qualität, die auf der Grundlage einer Risikoanalyse bewertet werden kann. Um eine umfassende Risikoanalyse zu ermöglichen, wird ein szenarienbasierter Modellansatz eingeführt, welcher zwei Arten von Konsequenzen im System unterscheidet: direkte Konsequenzen (in Verbindung mit Schäden einzelner Komponenten des Systems) und indirekte Konsequenzen (in Verbindung mit einem Versagen des Systems). Die Definition des Systems spielt deshalb für die Risikoanalyse eine wichtige Rolle, und es wird diskutiert, wie die Robustheit für verschiedene Definitionen zu unterschiedlichen Ergebnissen und Erkenntnissen im Sinne des Managements der Integrität des Bauwerks im gesamten Lebenszyklus unter Berücksichtigung seiner Funktionalität führt. Weiterhin werden wichtige Aspekte der Standardisierung der Robustheitsanalyse, wie auch Anforderungen an die Robustheit, diskutiert und Vorschläge zum Umgang mit diesen Aspekten unterbreitet. Auf der Grundlage der vorgestellten Ansätze zur Berechnung der Robustheit eines Bauwerks wird beschrieben, wie Entscheidungen in Bezug auf den Entwurf, die Zustandsbewertung, auf Inspektionen und Wartung sowie in Bezug auf die Überwachung von Bauwerken, in Hinblick auf das Management der Risiken in allen Phasen des Lebenszyklus, optimiert werden können. KW - Qualität KW - Risikoanalyse KW - Modellansatz KW - Konsequenz KW - Direkt KW - Indirekt KW - Versagen KW - Schaden KW - Lebenszyklus KW - Hängebrücke KW - Quality KW - Risk assessment KW - Model approach KW - Consequence KW - Direct KW - Indirect KW - Failure KW - Damage KW - Life-cycle KW - Suspension bridge KW - Entwurf und Konstruktion KW - Berechnungs- und Bemessungsverfahren KW - Bestandssicherung und Erhaltung PY - 2010 U6 - https://doi.org/10.1002/stab.201001354 SN - 0038-9145 SN - 1437-1049 SN - 0932-6375 VL - 79 IS - 8 SP - 547 EP - 555 PB - Ernst CY - Berlin AN - OPUS4-21862 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Farhan, Muhammad A1 - Schneider, Ronald A1 - Thöns, Sebastian T1 - Predictive information and maintenance optimization based on decision theory: a case study considering a welded joint in an offshore wind turbine support structure N2 - Predictive information and maintenance optimization for deteriorating structures is concerned with scheduling (a) the collection of information by inspection and monitoring and (b) maintenance actions such as repair, replacement, and retrofitting based on updated predictions of the future condition of the structural system. In this article, we consider the problem of jointly identifying—at the beginning of the service life—the optimal inspection time and repair strategy for a generic welded joint in a generic offshore wind turbine structure subject to fatigue. The optimization is performed based on different types of decision analyses including value of information analyses to quantify the expected service life cost encompassing inspection, repair, and fatigue damage for all relevant combinations of inspection time, repair method, and repair time. Based on the analysis of the expected service life cost, the optimal inspection time, repair method, and repair time are identified. Possible repair methods for a welded joint in an offshore environment include welding and grinding, for which detailed models are formulated and utilized to update the joint’s fatigue performance. The decision analyses reveal that an inspection should be scheduled approximately at mid-service life of the welded joint. A repair should be performed in the same year after an indication and measurement of a fatigue crack given an optimal inspection scheduling. This article concludes with a discussion on the results obtained from the decision and value of information analyses. KW - Integrity management KW - Value of information KW - Decision theory KW - Structural reliability KW - Fracture mechanics KW - Fatigue KW - Predictive maintenance KW - Wind turbine support structure PY - 2021 U6 - https://doi.org/10.1177/1475921720981833 SN - 1475-9217 SN - 1741-3168 PB - Sage Publications CY - London AN - OPUS4-52771 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hu, Wei-Hua A1 - Thöns, Sebastian A1 - Rohrmann, Rolf A1 - Said, Samir A1 - Rücker, Werner T1 - Vibration-based structural health monitoring of a wind turbine system. Part I: Resonance phenomenon N2 - This paper is focused on a resonance phenomenon of a wind turbine system in 5 MW class, on the basis of dynamic signals acquired continuously from the tubular tower under normal operational conditions during two years. Firstly, technique specifications of the wind turbine system are introduced and a finite element model is developed to characterize the structural dynamic properties. The following part describes the continuous dynamic monitoring system integrated with an automated operational modal analysis procedure using the poly-reference Least Squares Complex Frequency domain (p-LSCF) method. Subsequently, variations and mutual relationships of environmental/operational factors such as vibration amplitude, temperature, wind speed, rotation speed of blades, pitch angle and nacelle direction are also presented. Finally, significant resonance is observed due to the fundamental frequency of the tower matching with the harmonic frequency induced by the rotation of three blades. As the rotation speed of rotor approaches to 8 rpm, the vibration amplitude of the tower increases significantly and the corresponding damping value decreases. With the further rising wind velocity, the rotation speed of blades stops increasing and the input energy just contribute to accumulate the vibration amplitude of tower. Such observation indicates the Sommerfeld effect that aggravates the resonance phenomenon. A vibration control device is necessary to minimize the excessive structural responses. A companion paper will further discuss the environmental/operational effects on dynamic properties of the wind turbine system under the operational conditions. KW - Vibration KW - Structural health monitoring KW - Wind turbine KW - Automated operational modal analysis KW - Resonance KW - Sommerfeld effect PY - 2015 U6 - https://doi.org/10.1016/j.engstruct.2014.12.034 SN - 0141-0296 VL - 89 SP - 260 EP - 272 PB - Elsevier Ltd. CY - Oxford AN - OPUS4-32878 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hu, Wei-Hua A1 - Thöns, Sebastian A1 - Rohrmann, Rolf A1 - Said, Samir A1 - Rücker, Werner T1 - Vibration-based structural health monitoring of a wind turbine system. Part II: Environmental/operational effects on dynamic properties N2 - The second part of these companion papers mainly researches environmental/operational influences on structural dynamic properties under normal operational conditions during two years, in order to extract a statistical based damage-sensitive indicator for health monitoring of a wind turbine system. The correlation analyses between experimental identified frequencies, damping values as well as mode shapes and environmental/operational factors such as rotation speed of blades, wind speed, pitch angle, temperature and nacelle direction are presented. It is observed that the frequency estimates are influenced by the nacelle position, the activation of rotor, the rotation speed of blades and the wind speed as well as the temperature. Regarding to the damping estimates, they are mainly associated with variation of the aerodynamic damping due to the increasing wind speed. Besides, the resonance phenomenon is also observed in higher modes. The harmonic frequencies due to blades passing by tower are found and the corresponding damping value decreases. Moreover, the mode shapes in some modes are strongly affected by the position of the nacelle. Subsequently, two types of simulated damage including the reduction of stiffness in both the rotor blade and the tubular tower are successfully detected by applying the Principal Component Analysis (PCA) based methods to these temperature-sensitive frequency estimates. Comparison of change of the extracted health features indicates that they are more sensitive with the tower damage. KW - Vibration KW - Structural health monitoring KW - Wind turbine KW - Environmental/operational effects KW - Modal properties KW - Principal Component Analysis KW - Novelty analysis KW - Damage detection KW - Sommerfeld effect KW - Automated operational modal analysis KW - Resonance PY - 2015 U6 - https://doi.org/10.1016/j.engstruct.2014.12.035 SN - 0141-0296 VL - 89 SP - 273 EP - 290 PB - Elsevier Ltd. CY - Oxford AN - OPUS4-32879 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hu, Wei-Hua A1 - Thöns, Sebastian A1 - Said, Samir A1 - Rücker, Werner ED - Cunha, A. ED - Caetano, E. ED - Ribeiro, P. ED - Müller, G. T1 - Resonance phenomenon in a wind turbine system under operational conditions N2 - A prototype of wind turbines in 5 megawatt dass was built and tested at the first German offshore wind energy test fteld in the North Sea. In order to investigate dynamic behaviors under a complex state of loads, a continuous dynamic monitoring System was implemented by Federal Institute for Material Research and Testing (BAM). It recorded structural responses and environmental/operational variables from November 2007 to October 2009. This paper presents significant resonance phenomenon due to the interaction in the tower-nacelle System under operational conditions. Modal parameters are automatically estimated by the poly reference Least Square Complex Frequency domain (p-LSCF) method. Campbell plot demonstrates that a three-blade passage frequency and its multiples f3n match with the natural frequencies of the wind turbine System in several modal Orders. The damping estimates decrease and the Vibration amplitude increase significantly. A control System is necessary to minimize the excessive vibrations. T2 - EURODYN 2014 - 9th International conference on structural dynamics CY - Porto, Portugal DA - 30.06.2014 KW - Wind turbine KW - Tower-nacelle system KW - Resonance KW - Continuous dynamic monitoring KW - Automated operational modal analysis PY - 2014 SN - 978-972-752-165-4 SN - 2311-9020 SP - 3619 EP - 3626 AN - OPUS4-32970 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kapoor, M. A1 - Overgaard Christensen, Ch. A1 - Wittrup Schmidt, J. A1 - Dalsgaard Sørensen, J. A1 - Thöns, Sebastian T1 - Decision analytic approach for the reclassification of concrete bridges by using elastic limit information from proof loading N2 - Reclassification of bridges, i.e., a change in load rating, using reliability-based methods and a direct update with proof load information has been presented by many authors. However, bridge reclassification has hardly been studied from a decision analytic perspective, i.e., with quantification of the risks and benefits of different classification choices, and the expected benefit gain from proof loading. We derive, explain and exemplify a decision analytic approach for bridge reclassification along with models for (1) elastic and ultimate capacity and their adaptation with proof load information, (2) proof load information with classification outcomes accounting for target reliabilities and, (3) utilities including socio-economic benefits from reclassification. The approach and models are exemplified with a case study based on reclassification of bridges with a low existing classification. Decision rules, for practical use by a highway authority to find the optimal classification, are identified and documented based on: (1) the measurement of the capacity at elastic limit by proof loading, (2) the bridge reclassification benefits, and, (3) the required annual reliability level. From a Value of Information analysis, it is concluded that the proof load information is highly valuable for reclassification in cases of high socio-economic benefits and high reliability requirements. KW - Proof loading KW - Structural reliability KW - Value of information KW - Decision analysis PY - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-596845 SN - 0951-8320/ VL - 232 SP - 1 EP - 16 PB - Elsevier Ltd. AN - OPUS4-59684 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kapoor, M. A1 - Sørensen, J. D. A1 - Ghosh, S. A1 - Thöns, Sebastian T1 - Decision theoretic approach for identification of optimal proof load with sparse resistance information N2 - Proof load testing may be performed to confirm the reliability of the bridge for an existing classification or to prove the reliability for a higher classification. In this paper, a probabilistic decision analysis approach is applied to the scenario for the evaluation of target proof load in the situation where information on the bridge resistance model is lacking. In this case, the resistance model is established by proof loading and taking very basic prior knowledge into account. The decision scenario is modelled in the context of the proof load test planner who shall choose the required load level for assessment of a bridge. The choice of the load level depends on the risks due to the testing and the expected benefit gain from the test. Information acquired about the loading response from monitoring during the proof load testing is modelled by taking basis in the model uncertainty formulation. The optimal proof load level for classification of a single lane, simply supported bridge of 8m span subjected to live load from very heavy (gross weight > 80 tons) transport vehicles was calculated. The optimal proof load level was identified as leading to a positive expected benefit gain to the decision maker while also satisfying target reliability criteria for remaining service life. The analysis was performed for the evaluation of bridge performance with respect to five classifications of very heavy transport vehicles with different vehicle weights and configurations. T2 - 10th International Conference on Bridge Maintenance, Safety and Management (IABMAS) CY - Sapporo, Japan DA - 11.04.2021 KW - Proof load testing KW - Probabilistic decision analysis KW - Bridge resistance model PY - 2021 SN - 978-0-429-27911-9 U6 - https://doi.org/10.1201/9780429279119-104 SP - 789 EP - 797 PB - CRC Press CY - Boca Raton, Florida AN - OPUS4-57879 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kinne, Marko A1 - Thöns, Sebastian T1 - Fatigue Reliability Based on Predicted Posterior Stress Ranges Determined from Strain Measurements of Wind Turbine Support Structures N2 - In the present paper, an approach for updating the continuous stress range distribution of a welded connection of a wind turbine support structure with predicted information from strain measurements is presented. Environmental conditions, such as wind or, in offshore fields, waves and currents, in combination with rotor excitations generate cyclic stresses affecting the reliability of welded joints of the support structure over the service life. Using strain measurements, these conditions can be monitored, and the resulting stress ranges, under consideration of measurement, mechanical and material uncertainties, can be reconstructed. These stress ranges can be used as an input for updating the prior probability density function (PDF) of the stress ranges predicted by the overall dynamics and a detailed design analysis. Applying Bayesian probability theory and decision theoretical implications, the predicted posterior probability density of the stress ranges is calculated based on the design information and uncertainties. This approach is exemplified, and it is shown how the predicted stress ranges and the design stress ranges are distributed. The prior and the predicted posterior stress ranges are used for a reliability calculation for potentially entering a pre-posterior decision analysis KW - Strain measurements of wind turbine support structures KW - Bayesian updating of stress ranges KW - Posterior fatigue reliability PY - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-572663 VL - 16 IS - 5 SP - 1 EP - 26 PB - MDPI AN - OPUS4-57266 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -