TY - JOUR A1 - Heinze, Christoph A1 - Schwenk, Christopher A1 - Rethmeier, Michael T1 - Numerical calculation of residual stress development of multi-pass gas metal arc welding JF - The journal of constructional steel research N2 - In various applications, welding-induced residual stresses have a substantial impact on the integrity of welded constructions. Tensile residual stress can promote stress-corrosion cracking, brittle fracture, and reduces the fatigue life in service, as well as influences component design due to critical stress concentrations within the component. In the present paper, a six bead multi-pass gas metal arc weld of 20 mm thick structural steel S355J2+N is experimentally and numerically investigated. The studies include transient 2D and 3D numerical calculations which consider temperature-dependent material properties, phase transformations, 'thermal' tempering, transformation plasticity, volume change due to phase transformation, an elastic–plastic material model, and isotropic strain hardening. The experimentally determined and calculated residual stresses are in a good agreement. Furthermore, the influence of the preheat and interpass temperature on welding-induced residual stresses is shown in the present investigation. KW - Welding simulation KW - Gas metal arc welding KW - Welding-induced residual stress KW - Multi-pass welding KW - Sensitivity analysis PY - 2012 DO - https://doi.org/10.1016/j.jcsr.2011.08.011 SN - 0143-974x VL - 72 SP - 12 EP - 19 PB - Elsevier CY - Oxford AN - OPUS4-25629 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Chen, Ji A1 - Schwenk, Christopher A1 - Wu, Chuan Song A1 - Rethmeier, Michael T1 - Predicting the influence of groove angle on heat transfer and fluid flow for new gas metal arc welding processes JF - International journal of heat and mass transfer N2 - This article studies the three dimensional transient weld pool dynamics and the influence of groove angle on welding of low carbon structural steel plates using the ForceArc® process. The deformation of the weld bead is also calculated with an accurate coupling of the heat transfer with fluid flow through continuity, momentum and the energy equations combined with the effect of droplet impingement, gravity, electromagnetic force, buoyancy, drag forces and surface tension force (Marangoni effect). Different angles of V groove are employed under the same welding parameters and their influence on the weld pool behavior and weld bead geometry is calculated and analyzed, which is needed for subsequent calculations of residual stress and distortion of the workpiece. Such a simulation is an effective way to study welding processes because the influence of all welding parameters can be analyzed separately with respect to heat transfer, weld pool dynamic, and microstructure of the weld. Good agreement is found between the predicted and experimentally determined weld bead cross-section and temperature cycles. It is found that the main flow pattern is more or less the same although the groove angle increases, but it will evoke larger amount of fluid to flow downward to get deeper penetration. KW - Numerical simulation KW - Gas metal arc welding KW - Weld pool dynamics KW - Fluid flow KW - V groove PY - 2012 DO - https://doi.org/10.1016/j.ijheatmasstransfer.2011.08.046 SN - 0017-9310 VL - 55 IS - 1-3 SP - 102 EP - 111 PB - Elsevier CY - Amsterdam AN - OPUS4-26001 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Brauser, Stephan A1 - Schwenk, Christopher A1 - Rethmeier, Michael A1 - Noack, T. A1 - Jüttner, S. T1 - Influence of welding-induced cracks on the fatigue strength of resistance-spot-welded joints made of high-strength austenitic steel JF - Welding and cutting N2 - In the rough conditions in the fabrication of automobile bodies, it is not always possible to avoid welding-induced imperfections such as cracks during the resistance spot welding of high-strength steels. In this respect, the influence of such cracks on the fatigue strength particularly of modern high-strength austenitic steels is not sufficiently well-known at present. The influence of welding cracks with various positions and formations was therefore investigated within the framework of this paper. In this case, the analysis of the standardised stiffness courses of specimens and the comparison of the numbers of failure stress cycles served to prove that the surface cracks produced without any spatter in the centre, interfacial region and peripheral region of the weld nugget do not have any negative influence on the fatigue strength of the high-strength austenitic material investigated here. Specimens which were manufactured with welding spatter and exhibit cracks in the peripheral region show considerably higher numbers of failure stress cycles than crack-free reference specimens. PY - 2012 SN - 1612-3433 VL - 11 IS - 4 SP - 232 EP - 235 PB - DVS - German Welding Society CY - Düsseldorf AN - OPUS4-26346 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Heinze, Christoph A1 - Schwenk, Christopher A1 - Rethmeier, Michael T1 - The effect of tack welding on numerically calculated welding-induced distortion JF - Journal of materials processing technology N2 - A single-layer pulsed gas metal arc weld of structural steel S355J2+N with a thickness of 5 mm is experimentally and numerically investigated. Two tack welds are considered in the numerical simulation into two different ways. First, the tack welds are represented by elements belonging to the initial material. This implies that the 'tack weld material' was not exposed to any thermal load or phase transformation before actual welding was performed. The weld seam is shortened and there is an influence on the stiffness of the whole structure affecting the calculation result. Secondly, the tack welds were simulated as conducted in the experimental welding procedure. The cases considering tack welding are compared to a simulation neglecting tack welding and to the experimental results. The influence of tack welds on the calculated welding-induced distortion is clarified and a contribution to an improved simulation-based prediction of welding-induced distortion is possible by modeling tack welding according to the realistic fabrication procedure. KW - Welding simulation KW - Welding-induced distortion KW - Gas metal arc welding KW - Tack welding PY - 2012 DO - https://doi.org/10.1016/j.jmatprotec.2011.09.016 SN - 0924-0136 SN - 1873-4774 VL - 212 IS - 1 SP - 308 EP - 314 PB - Elsevier CY - Amsterdam AN - OPUS4-24820 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schempp, Philipp A1 - Cross, Carl Edward A1 - Schwenk, Christopher A1 - Rethmeier, Michael T1 - Influence of Ti and B additions on grain size and weldability of aluminium alloy 6082 JF - Welding in the world N2 - Grain refinement is an important possibility to enhance the weldability of aluminium weld metal that is usually defined by its susceptibility to solidification cracking. In this study, grain refinement was achieved through the addition of commercial grain refiner containing titanium and boron to the GTA weld metal of aluminium alloy 6082. The weld metal mean grain size could be reduced significantly from about 70 µm to a saturated size of 21 µm with a change in grain shape from columnar to equiaxed. The grain refinement prevented the formation of centreline solidification cracking that was present only in welds with unrefined grain structure. A variation of torch speed led to a strong change of solidification parameters such as cooling rate that was measured in the weld metal and the corresponding solidification rate and thermal gradient. The ratio thermal gradient/growth rate (G/R) decreased from 50 K s/mm² (high torch speed) to 10 K s/mm² (low torch speed). However, the variation of torch speed did not change the tendency for solidification cracking. The microstructure of unrefined and completely refined weld metal was compared. The observed change in size and distribution of the interdendritic phases was related to the change in susceptibility to solidification cracking. KW - Aluminium KW - WIG-Schweißen KW - Kornfeinung KW - Schweißeignung KW - Heißrisse KW - Aluminium alloy KW - Solidification cracking KW - Weldability KW - GTA welding PY - 2012 SN - 0043-2288 SN - 1878-6669 VL - 56 IS - 09/10 SP - 95 EP - 104 PB - Springer CY - Oxford AN - OPUS4-26992 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -