TY - JOUR A1 - Lüth, Peter A1 - Uhlig, S. A1 - Frost, K. A1 - Malow, Marcus A1 - Michael-Schulz, Heike A1 - Schmidt, Martin A1 - Zakel, Sabine T1 - CEQAT-DGHS interlaboratory tests for chemical safety: Validation of laboratory test methods by determining the measurement uncertainty and probability of incorrect classification including so-called “Shark profiles” N2 - Laboratory test results are of vital importance for correctly classifying and labelling chemicals as “hazardous” as defined in the UN Globally Harmonized System (GHS) / EC CLP Regulation or as “dangerous goods” as defined in the UN Recommendations on the Transport of Dangerous Goods. Interlaboratory tests play a decisive role in assessing the reliability of laboratory test results. Interlaboratory tests performed over the last 10 years have examined different laboratory test methods. After analysing the results of these interlaboratory tests, the following conclusions can be drawn: 1. There is a need for improvement and validation for all laboratory test methods examined. 2. To avoid any discrepancy concerning the classification and labelling of chemicals, the use of validated laboratory test methods should be state of the art, with the results accompanied by the measurement uncertainty and (if applicable) the probability of incorrect classification. This paper addresses the probability of correct/incorrect classification (for example, as dangerous goods) on the basis of the measurement deviation obtained from interlaboratory tests performed by the Centre for quality assurance for testing of dangerous goods and hazardous substances (CEQAT-DGHS) to validate laboratory test methods. This paper outlines typical results (e.g. so-called “Shark profiles” – the probability of incorrect classification as a function of the true value estimated from interlaboratory test data) as well as general conclusions and steps to be taken to guarantee that laboratory test results are fit for purpose and of high quality. T2 - 13th International Symposium on Hazards, Prevention and Mitigation of Industrial Explosions (ISHPMIE 2020) CY - Brunswick, Germany DA - 27.07.2020 KW - Dangerous goods KW - Hazardous substances KW - Interlaboratory test KW - Test method KW - Validation KW - Quality assurance KW - Measurement uncertainty KW - Incorrect classification KW - Shark profiles PY - 2021 DO - https://doi.org/10.1016/j.jlp.2021.104532 SN - 0950-4230/ VL - 72 SP - 104532 PB - Elsevier Ltd. AN - OPUS4-52751 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Flores, E. A1 - Idrees, F. A1 - Moussay, P. A1 - Viallon, J. A1 - Wielgosz, R. A1 - Fernández, T. A1 - Ramírez, S. A1 - Rojo, A. A1 - Shinji, U. A1 - Waldén, J. A1 - Sega, M. A1 - Sang-Hyub, O. A1 - Macé, T. A1 - Couret, C. A1 - Qiao, H. A1 - Smeulders, D. A1 - Guenther, F.R. A1 - Thorn, W.J. III A1 - Tshilongo, J. A1 - Ntsasa, N.G. A1 - Stovcík, V. A1 - Valková, M. A1 - Konopelko, L. A1 - Gromova, E. A1 - Nieuwenkamp, G. A1 - Wessel, R. M. A1 - Milton, M. A1 - Harling, A. A1 - Vargha, G. A1 - Tuma, Dirk A1 - Kohl, Anka A1 - Schulz, Gert T1 - Final report on international comparison CCQM-K74: Nitrogen dioxide, 10 µmol/mol N2 - There is a high international priority attached to activities which reduce NOx in the atmosphere. The current level of permitted emissions is typically between 50 µmol/mol and 100 µmol/mol, but lower values are expected in the future. Currently, ambient air quality monitoring regulations also require the measurement of NOx mole fractions as low as 0.2 µmol/mol. The production of accurate standards at these levels of mole fractions requires either dilution of a stable higher concentration gas standard or production by a dynamic technique, for example one based on permeation tubes. The CCQM-K74 key comparison was designed to evaluate the level of comparability of National Metrology Institutes' measurement capabilities and standards for nitrogen dioxide (NO2) at a nominal mole fraction of 10 µmol/mol. The measurements of this key comparison took place from June 2009 to May 2010. Seventeen laboratories took part in this comparison coordinated by the BIPM and VSL. The key comparison reference value was based on BIPM measurement results, and the standard measurement uncertainty of the reference value was 0.042 µmol/mol. This key comparison demonstrated that the results of the majority of the participants agreed within limits of ±3% relative to the reference value. The results of only one laboratory lay significantly outside these limits. Likewise this comparison made clear that a full interpretation of the results of the comparison needed to take into account the presence of nitric acid (in the range 100 nmol/mol to 350 nmol/mol) in the cylinders circulated as part of the comparison, as well as the possible presence of nitric acid in the primary standards used by participating laboratories. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCQM, according to the provisions of the CIPM Mutual Recognition Arrangement (MRA). DatesIssue 1A (Technical Supplement 2012) KW - Ringversuch KW - NO2 KW - Spurenverunreinigungen KW - Meßverfahren PY - 2012 DO - https://doi.org/10.1088/0026-1394/49/1A/08005 SN - 0026-1394 SN - 1681-7575 VL - 49 IS - 08005 SP - 1 EP - 117 PB - Inst. of Physics Publ. CY - Bristol AN - OPUS4-25927 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gaebler, A. A1 - Moessinger, A. A1 - Goelden, F. A1 - Manabe, A. A1 - Goebel, M. A1 - Follmann, R. A1 - Koether, D. A1 - Modes, C. A1 - Kipka, A. A1 - Deckelmann, M. A1 - Rabe, Torsten A1 - Schulz, Bärbel A1 - Kuchenbecker, Petra A1 - Lapanik, A. A1 - Mueller, S. A1 - Haase, W. A1 - Jakoby, R. T1 - Liquid crystal-reconfigurable antenna concepts for space applications at microwave and millimeter waves N2 - Novel approaches of tunable devices for millimeter wave applications based on liquid crystal (LC) are presented. In the first part of the paper, a novel concept of a tunable LC phase shifter realized in Low Temperature Cofired Ceramics technology is shown while the second part of the paper deals with a tunable high-gain antenna based on an LC tunable reflectarray. The reflectarray features continuously beam scanning in between ±25°. Also first investigations on radiation hardness of LCs are carried out, indicating that LCs might be suitable for space applications. KW - Tunable antenna KW - Phase shifter KW - Liquid crystal KW - LTCC PY - 2009 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-194273 DO - https://doi.org/10.1155/2009/876989 SN - 1687-5877 VL - 2009 IS - Article ID 876989 SP - 1 EP - 7 PB - Hindawi Publishing Corporation CY - New York, NY, USA AN - OPUS4-19427 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schulz, T. A1 - Reimann, T. A1 - Bochmann, A. A1 - Vogel, A. A1 - Capraro, B. A1 - Mieller, Björn A1 - Teichert, S. A1 - Töpfer, J. T1 - Sintering behavior, microstructure and thermoelectric properties of calcium cobaltite thickfilms for transversal thermoelectric multilayer generators N2 - The sintering behavior and the thermoelectric performance of Ca3Co4O9 multilayer laminates were studied, and a multilayer thermoelectric generator was fabricated. Compacts and multilayer samples with anisotropic microstructure and residual porosity were obtained after conventional sintering at 920 °C, whereas dense and isotropic multilayer samples were prepared by firing at 1200 °C and reoxidation at 900 °C. A hot-pressed sample has a dense and anisotropic microstructure. Samples sintered at 920 °C exhibit low electrical conductivity due to the low density, whereas the Seebeck coefficient is not sensitive to preparation conditions. However, thermal conductivity of multilayers is very low, and, hence acceptable ZT values are obtained. A ransversal multilayer thermoelectric generator (TMLTEG) was fabricated by stacking layers of Ca3Co4O9 green tapes, AgPd conductor printing, and co-firing at 920 °C. The TMLTEG has a power output of 3 mW at ΔT =200 K in the temperature interval of 25 °C to 300 °C. KW - Thermoelectric oxide KW - Calcium cobaltite KW - Pressure-assisted sintering KW - Multilayer PY - 2018 DO - https://doi.org/10.1016/j.jeurceramsoc.2017.11.017 SN - 0955-2219 SN - 1873-619X VL - 38 IS - 4 SP - 1600 EP - 1607 PB - Elsevier Ltd. AN - OPUS4-43983 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hartmann, S A1 - Sturm, Heinz A1 - Blaudeck, T A1 - Hoelck, O A1 - Hermann, S A1 - Schulz, SE A1 - Wunderle, B. T1 - Experimental and computational studies on the role of surface functional groups in the mechanical behavior of interfaces between single-walled carbon nanotubes and metals N2 - To study the mechanical interface behavior of single-walled carbon nanotubes (CNTs) embedded in a noble metal, we performed CNT-metal pull-out tests with in situ scanning electron microscope experiments. Molecular dynamics (MD) simulations were conducted to predict force-displacement data during pull-out, providing critical forces for failure of the system. In MD simulations, we focused on the influence of carboxylic surface functional groups (SFGs) covalently linked to the CNT. Experimentally obtained maximum forces between 10 and 102 nN in palladium and gold matrices and simulated achievable pulling forces agree very well. The dominant failure mode in the experiment is CNT rupture, although several pull-out failures were also observed. We explain the huge scatter of experimental values with varying embedding length and SFG surface density. From simulation, we found that SFGs act as small anchors in the metal matrix and significantly enhance the maximum forces. This interface reinforcement can lead to tensile stresses sufficiently high to initiate CNT rupture. To qualify the existence of carboxylic SFGs on our CNT material, we performed analytical investigation by means of fluorescence labeling of surface species and discuss the results. With this contribution, we focus on a synergy between computational and experimental approaches involving MD simulations, nano scale testing, and analytics (1) to predict to a good degree of accuracy maximum pull-out forces of single-walled CNTs embedded in a noble metal matrix and (2) to provide valuable input to understand the underlying mechanisms of failure with focus on SFGs. This is of fundamental interest for the design of future mechanical sensors incorporating piezoresistive single-walled CNTs as the sensing element. KW - Oxygen-containing functionalities KW - Molecular-dynamics KW - Structural characterization KW - Reinforced composites KW - Raman spectroscopy KW - Shear strength KW - Polymer matrix KW - Pull-out KW - Simulation KW - Purification PY - 2016 DO - https://doi.org/10.1007/s10853-015-9142-6 SN - 0022-2461 SN - 1573-4803 VL - 51 IS - 3 SP - 1217 EP - 1233 AN - OPUS4-35795 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bismarck, A. A1 - Lee, A.F. A1 - Sarac, A.S. A1 - Schulz, Eckhard A1 - Wilson, K. T1 - Electrocoating of carbon fibres: A route for interface control in carbon fibre reinforced poly methylmethacrylate? N2 - A simple method of creating defined PMMA and poly (MMA-co-Cz) electrocoatings on carbon fibres is described. The electrodeposition of poly methylmethacrylate (PMMA) onto unsized, unmodified carbon fibres was performed by simple constant current electrolyses of methylmethacrylate (MMA) monomer in dimethylformamide (DMF) solutions and the ‘pure’ liquid monomer using sodium nitrate and lithium perchlorate as supporting electrolytes. The presence of polymeric coatings successfully attached to the carbon fibres was verified by scanning electron microscopy and photoelectron spectroscopy (XPS). Performing the electrolysis in dilute MMA in DMF solutions ([MMA] < 5 M) results in the deposition of powder-like polymer on the carbon fibre electrodes. Increasing the MMA concentration in the DMF solution results in a homogeneous PMMA coating of the carbon fibres. The degree of grafting or coating increases with increasing MMA concentration, except when pure MMA is used without solvent. The adhesive strength between the electrocoated carbon fibres and a PMMA matrix was determined using the single fibre pull-out test. It was found that the interfacial fracture behaviour of all carbon fibre/PMMA model composites is rather brittle. The adhesion strength between the unmodified carbon fibres and the PMMA matrix was equal to the cohesive strength of the polymer matrix itself. Nevertheless, the electrodeposition of thin and homogeneous PMMA coatings resulted in much improved adhesion strengths. KW - Carbon fibres KW - Coating KW - Interfacial strength KW - Fibre - matrix bond KW - Photoelectron spectroscopy (XPS) PY - 2005 DO - https://doi.org/10.1016/j.compscitech.2005.01.006 SN - 0266-3538 VL - 65 IS - 10 SP - 1564 EP - 1573 PB - Elsevier CY - Barking AN - OPUS4-7540 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Giebler, Rainer A1 - Unger, Wolfgang A1 - Schulz, B. A1 - Reiche, J. A1 - Brehmer, L. A1 - Wühn, M. A1 - Wöll, Ch. A1 - Smith, A.P. A1 - Urquhart, S.G. T1 - Near-Edge X-ray Absorption Fine Structure Spectroscopy on Ordered Films of an Amphiphilic Derivate of 2,5-Diphenyl-1,3,4-Oxadiazole KW - NEXAFS KW - OMBD KW - X-ray Absorption Spectroscopy PY - 1999 SN - 0743-7463 SN - 1520-5827 VL - 15 IS - 4 SP - 1291 EP - 1298 PB - American Chemical Society CY - Washington, DC AN - OPUS4-828 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -