TY - JOUR A1 - Flores, E. A1 - Idrees, F. A1 - Moussay, P. A1 - Viallon, J. A1 - Wielgosz, R. A1 - Fernández, T. A1 - Ramírez, S. A1 - Rojo, A. A1 - Shinji, U. A1 - Waldén, J. A1 - Sega, M. A1 - Sang-Hyub, O. A1 - Macé, T. A1 - Couret, C. A1 - Qiao, H. A1 - Smeulders, D. A1 - Guenther, F.R. A1 - Thorn, W.J. III A1 - Tshilongo, J. A1 - Ntsasa, N.G. A1 - Stovcík, V. A1 - Valková, M. A1 - Konopelko, L. A1 - Gromova, E. A1 - Nieuwenkamp, G. A1 - Wessel, R. M. A1 - Milton, M. A1 - Harling, A. A1 - Vargha, G. A1 - Tuma, Dirk A1 - Kohl, Anka A1 - Schulz, Gert T1 - Final report on international comparison CCQM-K74: Nitrogen dioxide, 10 µmol/mol N2 - There is a high international priority attached to activities which reduce NOx in the atmosphere. The current level of permitted emissions is typically between 50 µmol/mol and 100 µmol/mol, but lower values are expected in the future. Currently, ambient air quality monitoring regulations also require the measurement of NOx mole fractions as low as 0.2 µmol/mol. The production of accurate standards at these levels of mole fractions requires either dilution of a stable higher concentration gas standard or production by a dynamic technique, for example one based on permeation tubes. The CCQM-K74 key comparison was designed to evaluate the level of comparability of National Metrology Institutes' measurement capabilities and standards for nitrogen dioxide (NO2) at a nominal mole fraction of 10 µmol/mol. The measurements of this key comparison took place from June 2009 to May 2010. Seventeen laboratories took part in this comparison coordinated by the BIPM and VSL. The key comparison reference value was based on BIPM measurement results, and the standard measurement uncertainty of the reference value was 0.042 µmol/mol. This key comparison demonstrated that the results of the majority of the participants agreed within limits of ±3% relative to the reference value. The results of only one laboratory lay significantly outside these limits. Likewise this comparison made clear that a full interpretation of the results of the comparison needed to take into account the presence of nitric acid (in the range 100 nmol/mol to 350 nmol/mol) in the cylinders circulated as part of the comparison, as well as the possible presence of nitric acid in the primary standards used by participating laboratories. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCQM, according to the provisions of the CIPM Mutual Recognition Arrangement (MRA). DatesIssue 1A (Technical Supplement 2012) KW - Ringversuch KW - NO2 KW - Spurenverunreinigungen KW - Meßverfahren PY - 2012 DO - https://doi.org/10.1088/0026-1394/49/1A/08005 SN - 0026-1394 SN - 1681-7575 VL - 49 IS - 08005 SP - 1 EP - 117 PB - Inst. of Physics Publ. CY - Bristol AN - OPUS4-25927 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hartmann, S A1 - Sturm, Heinz A1 - Blaudeck, T A1 - Hoelck, O A1 - Hermann, S A1 - Schulz, SE A1 - Wunderle, B. T1 - Experimental and computational studies on the role of surface functional groups in the mechanical behavior of interfaces between single-walled carbon nanotubes and metals N2 - To study the mechanical interface behavior of single-walled carbon nanotubes (CNTs) embedded in a noble metal, we performed CNT-metal pull-out tests with in situ scanning electron microscope experiments. Molecular dynamics (MD) simulations were conducted to predict force-displacement data during pull-out, providing critical forces for failure of the system. In MD simulations, we focused on the influence of carboxylic surface functional groups (SFGs) covalently linked to the CNT. Experimentally obtained maximum forces between 10 and 102 nN in palladium and gold matrices and simulated achievable pulling forces agree very well. The dominant failure mode in the experiment is CNT rupture, although several pull-out failures were also observed. We explain the huge scatter of experimental values with varying embedding length and SFG surface density. From simulation, we found that SFGs act as small anchors in the metal matrix and significantly enhance the maximum forces. This interface reinforcement can lead to tensile stresses sufficiently high to initiate CNT rupture. To qualify the existence of carboxylic SFGs on our CNT material, we performed analytical investigation by means of fluorescence labeling of surface species and discuss the results. With this contribution, we focus on a synergy between computational and experimental approaches involving MD simulations, nano scale testing, and analytics (1) to predict to a good degree of accuracy maximum pull-out forces of single-walled CNTs embedded in a noble metal matrix and (2) to provide valuable input to understand the underlying mechanisms of failure with focus on SFGs. This is of fundamental interest for the design of future mechanical sensors incorporating piezoresistive single-walled CNTs as the sensing element. KW - Oxygen-containing functionalities KW - Molecular-dynamics KW - Structural characterization KW - Reinforced composites KW - Raman spectroscopy KW - Shear strength KW - Polymer matrix KW - Pull-out KW - Simulation KW - Purification PY - 2016 DO - https://doi.org/10.1007/s10853-015-9142-6 SN - 0022-2461 SN - 1573-4803 VL - 51 IS - 3 SP - 1217 EP - 1233 AN - OPUS4-35795 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Giebler, Rainer A1 - Unger, Wolfgang A1 - Schulz, B. A1 - Reiche, J. A1 - Brehmer, L. A1 - Wühn, M. A1 - Wöll, Ch. A1 - Smith, A.P. A1 - Urquhart, S.G. T1 - Near-Edge X-ray Absorption Fine Structure Spectroscopy on Ordered Films of an Amphiphilic Derivate of 2,5-Diphenyl-1,3,4-Oxadiazole KW - NEXAFS KW - OMBD KW - X-ray Absorption Spectroscopy PY - 1999 SN - 0743-7463 SN - 1520-5827 VL - 15 IS - 4 SP - 1291 EP - 1298 PB - American Chemical Society CY - Washington, DC AN - OPUS4-828 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bismarck, A. A1 - Lee, A.F. A1 - Sarac, A.S. A1 - Schulz, Eckhard A1 - Wilson, K. T1 - Electrocoating of carbon fibres: A route for interface control in carbon fibre reinforced poly methylmethacrylate? N2 - A simple method of creating defined PMMA and poly (MMA-co-Cz) electrocoatings on carbon fibres is described. The electrodeposition of poly methylmethacrylate (PMMA) onto unsized, unmodified carbon fibres was performed by simple constant current electrolyses of methylmethacrylate (MMA) monomer in dimethylformamide (DMF) solutions and the ‘pure’ liquid monomer using sodium nitrate and lithium perchlorate as supporting electrolytes. The presence of polymeric coatings successfully attached to the carbon fibres was verified by scanning electron microscopy and photoelectron spectroscopy (XPS). Performing the electrolysis in dilute MMA in DMF solutions ([MMA] < 5 M) results in the deposition of powder-like polymer on the carbon fibre electrodes. Increasing the MMA concentration in the DMF solution results in a homogeneous PMMA coating of the carbon fibres. The degree of grafting or coating increases with increasing MMA concentration, except when pure MMA is used without solvent. The adhesive strength between the electrocoated carbon fibres and a PMMA matrix was determined using the single fibre pull-out test. It was found that the interfacial fracture behaviour of all carbon fibre/PMMA model composites is rather brittle. The adhesion strength between the unmodified carbon fibres and the PMMA matrix was equal to the cohesive strength of the polymer matrix itself. Nevertheless, the electrodeposition of thin and homogeneous PMMA coatings resulted in much improved adhesion strengths. KW - Carbon fibres KW - Coating KW - Interfacial strength KW - Fibre - matrix bond KW - Photoelectron spectroscopy (XPS) PY - 2005 DO - https://doi.org/10.1016/j.compscitech.2005.01.006 SN - 0266-3538 VL - 65 IS - 10 SP - 1564 EP - 1573 PB - Elsevier CY - Barking AN - OPUS4-7540 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -