TY - JOUR A1 - Schreiber, G. A1 - Schwarz, Wolfram T1 - Automatische Verfahren für elektrochemische Arbeiten. Die Aufnahme von U/1gI-Kurven PY - 1966 SN - 0013-4686 SN - 1873-3859 VL - 11 IS - 2 SP - 211 EP - 219 PB - Elsevier Science CY - Kidlington AN - OPUS4-10551 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meyerdierks, M. A1 - Schreiber, V. A1 - Böhne, Ch. A1 - Jüttner, S. A1 - Meschut, G. A1 - Rethmeier, Michael T1 - Validierung von Methoden zur Vermeidung von Liquid Metal Embrittlement an realitätsnahen Prinzipbauteilen (IGF 21483 BG / P 1488) N2 - Ziel des Forschungsprojekts ist es, eine Korrelation zwischen Gleeble-Heißzug-Prüfverfahren und Widerstandspunktschweiß-basierten Prüfverfahren herzustellen. Es soll die Effektivität von Methoden zu Vermeidung von Liquid Metal Embrittlement an realitätsnahen Prinzipbauteilen bewertet werden. Weiterhin soll Kenntnis über Auswirkungen von LME Rissen auf das Tragverhalten von realitätsnahen Prinzipbauteilen gewonnen werden. T2 - 30. Schweißtechnische Fachtagung CY - Barleben, Germany DA - 07.10.2021 KW - Liquid Metal Embrittlement KW - Gleeble KW - Heißzug KW - Widerstandpunktschweißen KW - Flüssigmetallversprödung PY - 2021 AN - OPUS4-54061 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gartiser, S. A1 - Heisterkamp, I. A1 - Schoknecht, Ute A1 - Burkhardt, M. A1 - Ratte, M. A1 - Ilvonen, O. A1 - Brauer, F. A1 - Brückmann, J. A1 - Dabrunz, A. A1 - Egeler, P. A1 - Eisl, A.-M. A1 - Feiler, U. A1 - Fritz, I. A1 - König, S. A1 - Lebertz, H. A1 - Pandard, P. A1 - Pötschke, G. A1 - Scheerbaum, D. A1 - Schreiber, F. A1 - Soldán, P. A1 - Weiß, R. A1 - Weltens, R. T1 - Results from a round robin test for the ecotoxicological evaluation of construction products using two leaching tests and an aquatic test battery N2 - A European round robin test according to ISO 5725-2 was conceptually prepared, realised, and evaluated. The aim was to determine the inter-laboratory variability of the overall process for the ecotoxicological characterization of construction products in eluates and bioassays. To this end, two construction products BAM-G1 (granulate) and HSR-2 (roof sealing sheet), both made of EPDM polymers (rubber), were selected. The granular construction product was eluted in a one stage batch test, the planar product in the Dynamic Surface Leaching test (DSLT). A total of 17 laboratories from 5 countries participated in the round robin test: Germany (12), Austria (2), Belgium (1), Czech Republic (1) and France (1). A test battery of four standardised ecotoxicity tests with algae, daphnia, luminescent bacteria and zebrafish eggs was used. As toxicity measures, EC50 and LID values were calculated. All tests, except the fish egg test, were basically able to demonstrate toxic effects and the level of toxicity. The reproducibility of test results depended on the test specimens and the test organisms. Generally, the variability of the EC50 or LID values increased with the overall level of toxicity. For the very toxic BAM-G1 eluate a relative high variability of CV ¼ 73%e110% was observed for EC50 in all biotests, while for the less toxic HSR-2 eluate the reproducibility of EC50 varied with sensitivity: it was very good (CV ¼ 9.3%) for the daphnia test with the lowest sensitivity, followed by the algae test (CV ¼ 36.4%). The luminescent bacteria test, being the most sensitive bioassay for HSR-2 Eluate, showed the highest variability (CV ¼ 74.8%). When considering the complex overall process the reproducibility of bioassays with eluates from construction products was acceptable. KW - Round robin test KW - Construction products KW - Leaching tests KW - Eluates KW - Ecotoxicity tests PY - 2017 DO - https://doi.org/10.1016/j.chemosphere.2017.01.146 SN - 0045-6535 SN - 1879-1298 VL - 175 SP - 138 EP - 146 PB - Elsevier Ltd. AN - OPUS4-39174 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schreiber, Frank A1 - Zimmermann, M. A1 - Escrig, S. A1 - Lavik, G. A1 - Kuypers, M.M.M. A1 - Meibom, A. A1 - Ackermann, M. T1 - Substrate and electron donor limitation induce phenotypic heterogeneity in different metabolic activities in a green sulphur bacterium N2 - Populations of genetically identical cells can display marked variation in phenotypic traits; such variation is termed phenotypic heterogeneity. Here, we investigate the effect of substrate and electron donor limitation on phenotypic heterogeneity in N2 and CO2 fixation in the green sulphur bacterium Chlorobium phaeobacteroides. We grew populations in chemostats and batch cultures and used stable isotope labelling combined with nanometer‐scale secondary ion mass spectrometry (NanoSIMS) to quantify phenotypic heterogeneity. Experiments in H2S (i.e. electron donor) limited chemostats show that varying levels of NH4+ limitation induce heterogeneity in N2 fixation. Comparison of phenotypic heterogeneity between chemostats and batch (unlimited for H2S) populations indicates that electron donor limitation drives heterogeneity in N2 and CO2 fixation. Our results demonstrate that phenotypic heterogeneity in a certain metabolic activity can be driven by different modes of limitation and that heterogeneity can emerge in different metabolic processes upon the same mode of limitation. In conclusion, our data suggest that limitation is a general driver of phenotypic heterogeneity in microbial populations. KW - NanoSIMS KW - Phenotypic heterogeneity PY - 2018 UR - https://onlinelibrary.wiley.com/doi/abs/10.1111/1758-2229.12616 DO - https://doi.org/10.1111/1758-2229.12616 SN - 1758-2229 VL - 10 IS - 2 SP - 179 EP - 183 PB - John Wiley & Sons Ltd AN - OPUS4-44596 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kowarik, Stefan A1 - Pithan, L. A1 - Nabok, D. A1 - Cocchi, C. A1 - Beyer, P. A1 - Duva, G. A1 - Simbrunner, J. A1 - Rawle, J. A1 - Nicklin, C. A1 - Schäfer, P. A1 - Draxl, C. A1 - Schreiber, F. T1 - Molecular structure of the substrate-induced thin-film phase of tetracene N2 - We present a combined experimental and theoretical study to solve the unit-cell and molecular arrangement of the tetracene thin film (TF) phase. TF phases, also known as substrate induced phases (SIP), are polymorphs that exist at interfaces and decisively impact the functionality of organic thin films, e.g., in a transistor channel, but also change the optical spectra due to the different molecular packing. As SIPs only exist in textured ultrathin films, their structure determination remains challenging compared to bulk materials. Here, we use grazing incidence Xray diffraction and atomistic simulations to extract the TF unit-cell parameters of tetracene together with the atomic positions within the unit-cell. KW - X-ray DIFFRACTION KW - Tetracene KW - Semiconductor KW - Optoelectronics KW - Molecule PY - 2018 DO - https://doi.org/10.1063/1.5043379 VL - 149 IS - 14 SP - 144701-1 EP - 144701-5 PB - AIP Publishing AN - OPUS4-46399 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Duva, G. A1 - Pithan, L. A1 - Zeiser, C. A1 - Reisz, B. A1 - Dieterle, J. A1 - Hofferberth, B. A1 - Beyer, P. A1 - Bogula, L. A1 - Opitz, A. A1 - Kowarik, Stefan A1 - Hinderhofer, A. A1 - Gerlach, A. A1 - Schreiber, F. T1 - Thin-Film Texture and Optical Properties of Donor/Acceptor Complexes. Diindenoperylene/F6TCNNQ vs Alpha-Sexithiophene/ F6TCNNQ N2 - In this work, two novel donor/acceptor (D/A) complexes, namely, diindenoperylene (DIP)/1,3,4,5,7,8-hexafluoro-tetracyanonaphthoquinodimethane (F6TCNNQ) and alpha-sexithiophene (6T)/F6TCNNQ, are studied. The D/A complexes segregate in form of π−π stacked D/A cocrystals and can be observed by X-ray scattering. The different conformational degrees of freedom of the donor molecules, respectively, seem to affect the thin-film crystalline texture and composition of the D/A mixtures significantly. In equimolar mixtures, for DIP/F6TCNNQ, the crystallites are mostly uniaxially oriented and homogeneous, whereas for 6T/F6TCNNQ, a mostly 3D (isotropic) orientation of the crystallites and coexistence of domains of pristine compounds and D/A complex, respectively, are observed. Using optical absorption spectroscopy, we observe for each of the two mixed systems a set of new, strong transitions located in the near-IR range below the gap of the pristine compounds: such transitions are related to charge-transfer (CT) interactions between donor and acceptor. The optical anisotropy of domains of the D/A complexes with associated new electronic states is studied by ellipsometry. We infer that the CT-related transition dipole moment is perpendicular to the respective π-conjugated planes in the D/A complex. KW - Optical properties KW - Molecular semiconductor KW - X-ray diffraction PY - 2018 DO - https://doi.org/10.1021/acs.jpcc.8b03744 SP - 18705 EP - 18714 PB - ACS AN - OPUS4-46400 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Marchant, H. K. A1 - Tegetmeyer, H. E. A1 - Ahmerkamp, S. A1 - Holtappels, M. A1 - Lavik, G. A1 - Graf, J. A1 - Schreiber, Frank A1 - Mussmann, M. A1 - Strous, M. A1 - Kuypers, M. M. M. T1 - Metabolic specialization of denitrifiers in permeable sediments controls N2O emissions N2 - Coastal oceans receive large amounts of anthropogenic fixed nitrogen (N), most of which is denitrified in the sediment before reaching the open ocean. Sandy sediments, which are common in coastal regions, seem to play an important role in catalysing this N‐loss. Permeable sediments are characterized by advective porewater transport, which supplies high fluxes of organic matter into the sediment, but also leads to fluctuations in oxygen and nitrate concentrations. Little is known about how the denitrifying communities in these sediments are adapted to such fluctuations. Our combined results indicate that denitrification in eutrophied sandy sediments from the world's largest tidal flat system, the Wadden Sea, is carried out by different groups of microorganisms. This segregation leads to the formation of N2O which is advectively transported to the overlying waters and thereby emitted to the atmosphere. At the same time, the production of N2O within the sediment supports a subset of Flavobacteriia which appear to be specialized on N2O reduction. If the mechanisms shown here are active in other coastal zones, then denitrification in eutrophied sandy sediments may substantially contribute to current marine N2O emissions. KW - Nitrous oxide KW - Denitrification KW - Cross-feeding PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-463061 UR - https://onlinelibrary.wiley.com/doi/full/10.1111/1462-2920.14385 DO - https://doi.org/10.1111/1462-2920.14385 SN - 1462-2920 SN - 1462-2912 VL - 20 IS - 12 SP - 4486 EP - 4502 PB - John Wiley & Sons Ltd AN - OPUS4-46306 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nguyen, H. G. A1 - Toman, B. A1 - van Zee, R. A1 - Prinz, Carsten A1 - Thommes, M. A1 - Ahmad, R. A1 - Kiska, D. A1 - Salinger, J. A1 - Walton, I. A1 - Walton, K. A1 - Broom, D. A1 - Benham, M. A1 - Ansari, H. A1 - Pini, R. A1 - Petit, C. A1 - Adolphs, J. A1 - Schreiber, A. A1 - Shigeoka, T. A1 - Konishi, Y. A1 - Nakai, K. A1 - Henninger, M. A1 - Petrzik, T. A1 - Kececi, C. A1 - Martis, V. A1 - Paschke, T. A1 - Mangano, E. A1 - Brandani, S. T1 - Reference isotherms for water vapor sorption on nanoporous carbon: results of an interlaboratory study N2 - This paper reports the results of an international interlaboratory study sponsored by the Versailles Project on Advanced Materials and Standards (VAMAS) and led by the National Institute of Standards and Technology (NIST) on the measurement of water vapor sorption isotherms at 25 °C on a pelletized nanoporous carbon (BAM-P109, a certified reference material). Thirteen laboratories participated in the study and contributed nine pure water vapor isotherms and four relative humidity isotherms, using nitrogen as the carrier gas. From these data, reference isotherms, along with the 95% uncertainty interval (Uk=2), were determined and are reported in a tabular format. KW - BAM-P109 KW - Interlaboratory study KW - Nanoporous carbon KW - Reference isotherm KW - VAMAS PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-576560 DO - https://doi.org/10.1007/s10450-023-00383-1 SN - 0929-5607 SP - 1 EP - 12 PB - Springer CY - Heidelberg AN - OPUS4-57656 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gerrits, Ruben A1 - Wirth, R. A1 - Schreiber, A. A1 - Feldmann, Ines A1 - Knabe, Nicole A1 - Schott, J, A1 - Benning, L.G. A1 - Gorbushina, Anna T1 - High-resolution imaging of fungal biofilm-induced olivine weathering N2 - Many microorganisms including free-living and symbiotic fungi weather minerals through the formation of biofilms on their surface. Weathering thus proceeds not only according to the mineral’s chemistry and the environmental conditions but also according to the local biofilm chemistry. These processes can be dissected in experiments with defined environmental settings and by employing genetic tools to modify traits of the fungal biofilm. Biofilms of the rock-inhabiting fungus Knufia petricola strain A95 (wild-type, WT) and its melanin-deficient mutant (ΔKppks) were grown on polished olivine sections in subaerial (air-exposed) and subaquatic (submerged) conditions. After seven months of interaction at pH 6 and 25°C, the fungus-mineral interface and abiotic olivine surface were compared using high resolution transmission electron microscopy (HRTEM). The abiotic, subaquatic olivine section showed a 25 nm thick, continuous amorphous layer, enriched in Fe and depleted in Si compared to the underlying crystalline olivine. This amorphous layer formed either through a coupled interfacial dissolution reprecipitation mechanism or through the adsorption of silicic acid on precipitated ferric hydroxides. Its thickness was likely enhanced by mechanical stresses of polishing. Directly underneath a fungal biofilm (WT and mutant alike), the surface remained mostly crystalline and was strongly etched and weathered, indicating enhanced olivine dissolution. The correlation between enhanced olivine dissolution and the absence of a continuous amorphous layer is a strong indication of the dissolution-inhibiting qualities of the latter. We propose that the fungal biofilm sequesters significant amounts of Fe, preventing formation of the amorphous layer and driving olivine dissolution onwards. The seemingly similar olivine surface underneath both WT and mutant biofilms illustrates the comparably insignificant role of specific biofilm traits in the weathering of olivine once biofilm attachment is imposed. Under subaerial conditions, the absence of water on the abiotic surface prohibited olivine dissolution. This was overcome by the water retention capacities of both the WT and mutant biofilm: the olivine surface underneath subaerial fungal biofilms was as weathered as the corresponding subaquatic olivine surface. Under the studied environmental settings, the effect of fungal biofilms on olivine weathering seems to be universal, independent of the production of melanin, the composition of extracellular polymeric substances (EPS) or air-exposure. KW - Bio-weathering KW - Forsterite KW - Extracellular polymeric substances KW - Melanin KW - Black fungi PY - 2021 DO - https://doi.org/10.1016/j.chemgeo.2020.119902 VL - 559 SP - 119902 PB - Elsevier B.V. AN - OPUS4-51403 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -