TY - JOUR A1 - Rosenau, Th. A1 - Mereiter, K. A1 - Jäger, Christian A1 - Schmid, P. A1 - Kosma, P. T1 - Sulfonium ylides derived from 2-hydroxy-benzoquinones: crystal and molecular structure and their one-step conversion jinto Mannich bases by amine N-oxides N2 - Reaction of 2-hydroxy-para-benzoquinones with DMSO/Ac2O produced dimethylsulfonium ylides, of which crystal structures as well as solid and liquid state NMR spectra were recorded. The ylides react with tertiary methylamine N-oxides in a one-pot, multi-step process to 3-methylamino-substituted benzoquinones. The mechanism starts with a deoxygenative deprotonation of the amine N-oxides, followed by a formal electrophilic displacement of DMSO by the resulting carbonium–iminium ion. KW - Sulfonium ylides KW - Amine N-oxides KW - Crystal structure KW - Benzoquinones PY - 2004 DO - https://doi.org/10.1016/j.tet.2004.05.015 SN - 0040-4020 SN - 1464-5416 VL - 60 IS - 27 SP - 5719 EP - 5723 PB - Elsevier Science CY - Kidlington AN - OPUS4-11014 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Abou-Ras, D. A1 - Caballero, R. A1 - Fischer, C.-H. A1 - Kaufmann, C.A. A1 - Lauermann, I. A1 - Mainz, R. A1 - Mönig, H. A1 - Schöpke, A. A1 - Stephan, C. A1 - Streeck, C. A1 - Schorr, S. A1 - Eicke, A. A1 - Döbeli, M. A1 - Gade, B. A1 - Hinrichs, J. A1 - Nunney, T. A1 - Dijkstra, H. A1 - Hoffmann, V. A1 - Klemm, D. A1 - Efimova, V. A1 - Bergmaier, A. A1 - Dollinger, G. A1 - Wirth, Thomas A1 - Unger, Wolfgang A1 - Rockett, A.A. A1 - Perez-Rodriguez, A. A1 - Alvarez-Garcia, J. A1 - Izquierdo-Roca, V. A1 - Schmid, T. A1 - Choi, P.-P. A1 - Müller, M. A1 - Bertram, F. A1 - Christen, J. A1 - Khatri, H. A1 - Collins, R.W. A1 - Marsillac, S. A1 - Kötschau, I. T1 - Comprehensive comparison of various techniques for the analysis of elemental distributions in thin films N2 - The present work shows results on elemental distribution analyses in Cu(In,Ga)Se2 thin films for solar cells performed by use of wavelength-dispersive and energy-dispersive X-ray spectrometry (EDX) in a scanning electron microscope, EDX in a transmission electron microscope, X-ray photoelectron, angle-dependent soft X-ray emission, secondary ion-mass (SIMS), time-of-flight SIMS, sputtered neutral mass, glow-discharge optical emission and glow-discharge mass, Auger electron, and Rutherford backscattering spectrometry, by use of scanning Auger electron microscopy, Raman depth profiling, and Raman mapping, as well as by use of elastic recoil detection analysis, grazing-incidence X-ray and electron backscatter diffraction, and grazing-incidence X-ray fluorescence analysis. The Cu(In,Ga)Se2 thin films used for the present comparison were produced during the same identical deposition run and exhibit thicknesses of about 2 µm. The analysis techniques were compared with respect to their spatial and depth resolutions, measuring speeds, availabilities, and detection limits. KW - Elemental distributions KW - Comparison KW - Depth profiling KW - Chemical mapping KW - Thin films KW - Solar cells KW - Chalcopyrite-type KW - Cu(In,Ga)Se2 PY - 2011 DO - https://doi.org/10.1017/S1431927611000523 SN - 1431-9276 SN - 1435-8115 VL - 17 IS - 5 SP - 728 EP - 751 PB - Cambridge University Press CY - New York, NY AN - OPUS4-24506 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dariz, P. A1 - Schmid, Thomas T1 - Spurenbestandteile in frühmittelalterlichem Ägyptisch Blau als Informationsträger N2 - Naturwissenschaftliche Belege für die Verwendung von Ägyptisch Blau, dem klassischen Blaupigment der römischen Antike, an frühmittelalterlichen Wandmalereien in Mittel- und Südeuropa sind bisher nur vereinzelt greifbar. Das hier diskutierte monochrom blaue Fragment einer Freskomalerei auf Tünche gehört zum zweiten Kirchenbau von St. Peter ob Gratsch (Südtirol, Norditalien); zumindest der Putzmörtel ist gemäß Radiocarbondatierung im 5. oder 6. Jahrhundert n. Chr. zu verorten. Das flächendeckende Abrastern der Probenoberfläche mittels Ramanmikrospektroskopie vermochte neben dem farbgebenden Cuprorivait (und Pflanzenschwarz aus der Untermalung) 26 begleitende Mineralien bis in den Spurenbereich nachzuweisen. Diese erstaunliche Vielfalt ist nur durch mikrospektroskopische Bildgebung in hoher Ortsauflösung zugänglich, ein solch vertiefter Einblick in die Mineralogie der zugrundeliegenden Rohstoffe als auch Umwandlungsreaktionen während Herstellung, Applikation und Alterung des künstlichen Blaupigmentes also an die Weiterentwicklung der analytischen Verfahren gebunden. Insbesondere die natürlichen Verunreinigungen des Quarzsandes liefern Indizien auf die Produktionsstätte: die beiden Klinopyroxene Augit und Aegirin deuten beispielsweise auf magmatischen Aktivitäten ausgesetzte Ablagerungen (oder auf vulkanische Aktivität bereits im Liefergebiet). Zusammen mit Diopsid und Feldspaten, einschließlich des seltenen Celsian, sind sie der Literatur zufolge charakteristischer Bestandteil von vom Fluss Volturno in den Golf von Gaeta transportierten carbonathaltigen Sedimenten. Im Verein mit der archäologischen Evidenz für die Erzeugung von Ägyptisch Blau in Cumae und Liternum und den übereinstimmenden Ausführungen der beiden römischen Fachschriftsteller Vitruv und Plinius der Ältere spricht dies für ein Fabrikat aus dem Golf von Pozzuoli. Als Kupferquelle wurde angesichts des Nachweises von Chalkosin (und Chalkopyrit) vermutlich ein sulfidisches Kupfererz nach Rosten zu Kupferoxid eingesetzt, als schmelzpunktsenkendes Flussmittel wohl ein gemischt-alkalisches, das heißt eine Mischung von Natrium- und Kaliumsalzen in Form von Pflanzenasche. Zum Teil mit Cuprorivait verwachsene, nicht gänzlich umgesetzte Quarzkristalle bei nur geringsten Spuren von Silikatglas lassen auf eine überwiegende Festkörperreaktion (Festphasensintern) schließen; das Aufschmelzen der Rohstoffe zu Glas dürfte bei der Pigmentsynthese eher eine untergeordnete Rolle gespielt haben. KW - Ägyptisch Blau KW - Ramanmikrospektroskopie KW - Spektroskopische Bildgebung KW - Cuprorivait KW - Amorpher Kohlenstoff PY - 2021 VL - 34 SP - 109 EP - 122 PB - Wernersche Verlagsgeselltschaft CY - Worms AN - OPUS4-53758 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dariz, P. A1 - Schmid, Thomas T1 - Trace compounds in Early Medieval Egyptian blue carry information on provenance, manufacture, application, and ageing N2 - Only a few scientific evidences for the use of Egyptian blue in Early Medieval wall paintings in Central and Southern Europe have been reported so far. The monochrome blue fragment discussed here belongs to the second church building of St. Peter above Gratsch (South Tyrol, Northern Italy, fifth/ sixth century A.D.). Beyond cuprorivaite and carbon black (underpainting), 26 accessory minerals down to trace levels were detected by means of Raman microspectroscopy, providing unprecedented insights into the raw materials blend and conversion reactions during preparation, application, and ageing of the pigment. In conjunction with archaeological evidences for the manufacture of Egyptian blue in Cumae and Liternum and the concordant statements of the antique Roman writers Vitruvius and Pliny the Elder, natural impurities of the quartz sand speak for a pigment produced at the northern Phlegrean Fields (Campania, Southern Italy). Chalcocite (and chalcopyrite) suggest the use of a sulphidic copper ore, and water-insoluble salts a mixed-alkaline flux in the form of plant ash. Not fully reacted quartz crystals partly intergrown with cuprorivaite and only minimal traces of silicate glass portend solid-state reactions predominating the chemical reactions during synthesis, while the melting of the raw materials into glass most likely played a negligible role. KW - Egyptian blue KW - Raman microspectroscopy KW - Spectoscopic imaging KW - Cuprorivaite KW - Amorphous carbon PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-537591 DO - https://doi.org/10.1038/s41598-021-90759-6 VL - 11 SP - 1 EP - 12 PB - Nature Portfolio AN - OPUS4-53759 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schmid, Thomas A1 - Kraft, Ronja A1 - Dariz, P. T1 - Shedding light onto the spectra of lime - Part 2: Raman spectra of Ca and Mg carbonates and the role of d-block element luminescence N2 - We previously described the observation of a characteristic narrowband red luminescence emission of burnt lime (CaO), whose reason was unknown so far. This study presents Raman spectra of Mg5 CO3)4(OH)2∙4H2O, Mg5(CO3)4(OH)2, MgCO3, CaMgCO3 and CaCO3 (in limestone powder) as well as luminescence spectra of their calcination products. Comparison of the latter revealed MgO:Cr3+ as the source of the red lime luminescence in all studied samples, containing magnesium oxide as major component, minor component or trace. Spectral characteristics and theoretical background of the luminescence emission of d-block elements integrated in crystal lattices are discussed with the aim of sharpening the awareness for this effect in the Raman community and promoting its application in materials analysis. The latter is demonstrated by the Raman microspectroscopic imaging of the distributions of both Raman-active and Raman-inactive phases in clinker remnants in a 19th-century meso Portland cement mortar sample, which contain relatively high amounts of free lime detected in the form of both luminescing CaO and Raman-scattering Ca(OH)2, owing to exposure of the surface of the thin section to humid air. A combination of light and Raman spectroscopy revealed a calcium–magnesium–iron sulphide phase, indicating sulphurous raw materials and/or solid fuels employed in the calcination process, which in contrast to previously described morphologies of sulphides in cement clinker form extensive greenish black layers on free lime crystals. KW - Calcium carbonates KW - Raman spectroscopy KW - Luminescence KW - Magnesium carbonates KW - Meso Portland cement PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-537611 DO - https://doi.org/10.1002/jrs.6174 SN - 0377-0486 VL - 52 IS - 8 SP - 1462 EP - 1472 PB - Wiley Analytical Science AN - OPUS4-53761 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schmid, Thomas A1 - Hidde, Julia A1 - Grünier, Sophie A1 - Jungnickel, Robert A1 - Dariz, P. A1 - Riedel, Jens A1 - Neuhaus, B. T1 - Ageing effects in mountig media of microscope slide samples from natural history collections: A case study with Canada balsam and Permount™ N2 - Microscope slide collections represent extremely valuable depositories of research material in a natural history, forensic, veterinary, and medical context. Unfortunately, most mounting media of these slides deteriorate over time, with the reason for this not yet understood at all. In this study, Raman spectroscopy, ultraviolet–visible (UV–Vis) spectroscopy, and different types of light microscopy were used to investigate the ageing behaviour of naturally aged slides from museum collections and the experimentally aged media of Canada balsam and Permount™, representing a natural and a synthetic resin, respectively, with both being based on mixtures of various terpenes. Whereas Canada balsam clearly revealed chemical ageing processes, visible as increasing colouration, Permount™ showed physical deterioration recognisable by the increasing number of cracks, which even often impacted a mounted specimen. Noticeable changes to the chemical and physical properties of these mounting media take decades in the case of Canada balsam but just a few years in the case of Permount™. Our results question whether or not Canada balsam should really be regarded as a mounting medium that lasts for centuries, if its increasing degree of polymerisation can lead to a mount which is no longer restorable. KW - Deterioration KW - Microscope slides KW - Mounting media KW - Raman spectroscopy KW - UV–Vis spectroscopy PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-537632 DO - https://doi.org/10.3390/polym13132112 VL - 13 IS - 13 SP - 1 EP - 27 PB - MDPI CY - Basel AN - OPUS4-53763 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bevilacqua, N. A1 - Asset, T. A1 - Schmid, M. A. A1 - Markötter, Henning A1 - Manke, I. A1 - Atanassov, P. A1 - Zeis, R. T1 - Impact of catalyst layer morphology on the operation of high temperature PEM fuel cells N2 - Electrochemical impedance spectroscopy (EIS) is a well-established method to analyze a polymer electrolyte membrane fuel cell (PEMFC). However, without further data processing, the impedance spectrum yields only qualitative insight into the mechanism and individual contribution of transport, kinetics, and ohmic losses to the overall fuel cell limitations. The distribution of relaxation times (DRT) method allows quantifying each of these polarization losses and evaluates their contribution to a given electrocatalyst's depreciated performances. We coupled this method with a detailed morphology study to investigate the impact of the 3D-structure on the processes occurring inside a high-temperature polymer electrolyte membrane fuel cell (HT-PEMFC). We tested a platinum catalyst (Pt/C), a platinum-cobalt alloy catalyst (Pt3Co/C), and a platinum group metal-free iron-nitrogen-carbon (Fe–N–C) catalyst. We found that the hampered mass transport in the latter is mainly responsible for its low performance in the MEA (along with its decreased intrinsic performances for the ORR reaction). The better performance of the alloy catalyst can be explained by both improved mass transport and a lower ORR resistance. Furthermore, single-cell tests show that the catalyst layer morphology influences the distribution of phosphoric acid during conditioning. KW - High-temperature polymer electrolyte membrane fuel cell KW - Platinum-free catalyst KW - Mass transport KW - Oxygen reduction reaction KW - Distribution of relaxation times analysis PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-520917 DO - https://doi.org/10.1016/j.powera.2020.100042 VL - 7 SP - 100042 PB - Elsevier Ltd. AN - OPUS4-52091 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dariz, P. A1 - Schmid, Thomas T1 - Raman focal point on Roman Egyptian blue elucidates disordered cuprorivaite, green glass phase and trace compounds N2 - The discussed comparative analyses of Roman Imperial pigment balls and fragmentary murals unearthed in the ancient cities of Aventicum and Augusta Raurica (Switzerland) by means of Raman microspectroscopy pertain to a predecessor study on trace compounds in Early Medieval Egyptian blue (St. Peter, Gratsch, South Tyrol, Northern Italy). The plethora of newly detected associated minerals of the raw materials surviving the synthesis procedure validate the use of quartz sand matching the composition of sediments transported by the Volturno river into the Gulf of Gaeta (Campania, Southern Italy) with a roasted sulphidic copper ore and a mixed-alkaline plant ash as fluxing agent. Thus, the results corroborate a monopolised pigment production site located in the northern Phlegrean Fields persisting over the first centuries A.D., this in line with statements of the antique Roman writers Vitruvius and Pliny the Elder and recent archaeological evidences. Beyond that, Raman spectra reveal through gradual peak shifts and changes of band width locally divergent process conditions and compositional inhomogeneities provoking crystal lattice disorder in the chromophoric cuprorivaite as well as the formation of a copper-bearing green glass phase, the latter probably in dependency of the concentration of alkali flux, notwithstanding that otherwise solid-state reactions predominate the synthesis. KW - Raman microspectroscopy KW - Egyptian blue KW - Cuprorivaite PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-559028 DO - https://doi.org/10.1038/s41598-022-19923-w SN - 2045-2322 VL - 12 IS - 1 SP - 1 EP - 12 PB - Nature Publishing Group CY - London AN - OPUS4-55902 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zscherpel, Uwe A1 - Alekseychuk, Oleksandr A1 - Bellon, Carsten A1 - Ewert, Uwe A1 - Rost, P. A1 - Schmid, M. T1 - Korrosionsmapping an Rohrleitungen T2 - DGZfP-JAHRESTAGUNG 2002 CY - Weimar, Germany DA - 2002-05-06 PY - 2002 AN - OPUS4-19974 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Polami, S.M. A1 - Häfele, P. A1 - Rethmeier, Michael A1 - Schmid, A. T1 - Study on fatigue behavior of dissimilar materials and different methods of friction-welded joints for drive pinion in trucks N2 - This work addresses the fatigue strength of friction-welded joints for the drive pinion in heavy-duty trucks. Three different friction welding (FW) variants were tested for the joint between the pinion and the bevel of the shaft: (1) conventional FW using series materials, (2) conventional FW from dissimilar materials for every part, and (3) dissimilar joints by applying joint-site structure of FW. Each joint variant was compared to the series production part using a 4-point bending test. Results showed that the higher strength material slightly improved the fatigue strength of the conventional friction-welded joints. Despite the light weight of the component joined structurally at the site, the joint revealed a lower endurance limit compared to other variants. However, there has been little discussion on the weld zone position. The applied equivalent stresses on the weld zone of the joint-site structure are less similar to the position for the conventional FW. Characterization of the failure explains the extraordinary behaviors in relation to S-N curves. PY - 2015 DO - https://doi.org/10.1007/s40194-015-0258-8 SN - 0043-2288 SN - 1878-6669 VL - 59 IS - 6 SP - 917 EP - 926 PB - Springer CY - Oxford AN - OPUS4-34841 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dariz, P. A1 - Neubauer, J. A1 - Goetz-Neunhoeffer, F. A1 - Schmid, Thomas T1 - Calcium aluminates in clinker remnants as marker phases for various types of 19th-century cement studied by Raman microspectroscopy N2 - In the second half of the 19th century, Roman and Portland cements played an essential role as active hydraulic binder material in building construction and façade ornamentation. Size and heterogeneous phase assemblage of unhydrated cement clinker remnants in historical cement stone differ significantly from those of remnants occurring in modern Portland cement clinker burnt in rotary kilns due to limitations of the production technology available in the 19th century (e.g., comminution and homogeneity of the feedstock, burning temperature and regime in the intermittently operated shaft kilns, grinding machinery). In the common analytical approach, thin sections and fracture surfaces of historical Roman and Portland cement mortars are characterised regarding their mineralogical composition and microstructure using optical and electron microscopic imaging techniques. Raman microspectroscopy can be additionally employed for petrographic examination, overcoming some limitations of the methods used so far. The determination of the phase content of residual cement clinker grains in the hydrated matrix allows for the differentiation of Roman and Portland cement binders. As marker phases, we propose the calcium aluminates CA, C12A7, C2AS and C3A – besides the commonly used calcium silicates C2S and C3S – because of their different formation temperatures and stability fields. This study focuses on the identification of different calcium aluminate and aluminoferrite phases in clinker remnants in samples of cast ornaments of three buildings in Switzerland raised between 1875 and 1893; the obtained Raman spectra are compared with fingerprint spectra of the corresponding pure, synthesised clinker phases collected with the same instrument for an unambiguous data interpretation. In addition to these phases, mainly minerals showing no hydraulic activity, such as, wollastonite CS, rankinite C3S2, free lime, portlandite, iron oxides, garnets, augite, albite and feldspathoids have been identified in the sampled historical cement stones by Raman microspectroscopy. As there is a strong relationship between coexisting clinker phases and the chemical composition of the raw meal as well as the burning and cooling history during clinkering, the results can help in understanding the physical and mechanical characteristics of historical cement mortars. This knowledge is fundamental for the choice and the formulation of appropriate repair materials with tailored properties employed in the field of restoration and preservation of the architectural heritage of the 19th and early 20th centuries. KW - Roman cement KW - Meso Portland cement KW - Portland cement KW - Clinker relicts KW - Raman microspectroscopy PY - 2016 DO - https://doi.org/10.1127/ejm/2016/0028-2577 SN - 0935-1221 SN - 1617-4011 VL - 28 IS - 5 SP - 907 EP - 914 AN - OPUS4-39046 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schmid, Thomas A1 - Dariz, P. T1 - Chemical imaging of historical mortars by Raman microscopy N2 - Raman microspectroscopic imaging was just recently introduced into the analysis of cement stone. Here, we demonstrate this approach on 19th-century Roman and Portland cement mortars and extend it to gypsum-based samples originating from a medieval stucco sculpture (high-burnt gypsum) and a stucco ornament prefabricated at the beginning of the 20th century (plaster of Paris). Furthermore, the distributions of dolomite and Calcite were mapped in an accessory mineral grain with approx. 500 nm lateral Resolution demonstrating the ability for studying alteration processes such as dedolomitisation. As we would like to make this approach accessible to other researchers, we discuss its present status, advantages, limitations and pitfalls. KW - Raman microscopy KW - Chemical imaging KW - Cement clinker KW - Gypsum KW - Dedolomite PY - 2016 DO - https://doi.org/10.1016/j.conbuildmat.2016.03.153 SN - 0950-0618 VL - 114 SP - 506 EP - 516 PB - Elsevier Science CY - Oxford, UK AN - OPUS4-36661 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dariz, P. A1 - Schmid, Thomas T1 - Granulierte Hochofenschlacke als Mörtelzuschlag im 19. Jahrhundert in der Schweiz N2 - Als schweizweit einziger Hersteller produzierte die Gesellschaft der Ludwig von Roll'schen Eisenwerke seit den 1870er Jahren granulierte Hochofenschlacke. Im Blashochofen von Choindez im Schweizer Jura wird bis Mitte der 1920er Jahre Bohnerz aus dem Delsberger Becken, das kontemporär publizierten Analysen zufolge als Spuren- bzw. Schwermetalle Titan, Chrom, Blei und Vanadium enthält, zu grauem Roheisen verhüttet. In zementgebundenen Mörtelmischungen des 19. und frühen 20. Jahrhunderts aus verschiedenen Regionen der Schweiz finden sich neben reliktischen Hüttensandsplittern vereinzelt bis zu fünfhundert Mikrometer große scharze Kugeln mit grünlichem Schimmer, wohl nicht gemahlener Schlackensand. Deren mittels Ramanmikroskopie (Phasenbestand) und energiedispersiver Röntgenspektroskopie am Rasterelektronenmikroskop (Elementanalytik) ermittelte Mineralogie ergibt in Form von Plattnerit PbO2, Rutil TiO2 und vermitlich Chromit Fe(II)Cr2O4 bzw. Nichromit (Ni,Co,Fe(II))(Cr,Fe(III),Al)2)4 Übereinstimmungen mit den nur die Elementzusammensetzung berücksichtigenden historischen Resultaten. Ebenfalls im Zusammenhang mit dem das Bohnerz begleitenden Boluston samt Huppererde zu sehen sind die Minerale Coelestin SrSO4 und Zirkon ZrSiO4, des Weiteren der Siliciumcarbidpolymorph Moissanit SiC als Reaktionsprodukt von Quarzsand und Brennstoff. Die Kohärenz zwischen um die Jahrhundertwende durchgeführten Analysen von Rohmaterial als auch Ofenbruch aus dem in Choindez betriebenen Hochofen und den in diesem Beitrag diskutierten Resultaten moderner analytischer Methoden spricht für den Gebrauch von granulierter Schlacke aus dem Hause Ludwig von Roll als Mörtelzuschlag. Die Hüttensandkörner, eigentlich latent hydraulisch, sind aufgrund der fehlenden Aufbereitung zu grob für eine effektive Hydratation und deshalb trotz reaktiver Glasphase und Klinkermineralien (Belit Ca2SiO4 und Monocalciumaluminat CaAl2O4) intakt in der Bindemittelmatrix erhalten. N2 - From the 1870s the Ludwig von Roll ironworks produced granulated blast furnace slag in Choindez (Jura, Switzerland) as a by-product of the smelting of bean ore excavated until 1926 in the Delsberg Basin. According to historical analyses, this iron ore deposit contais heavy and trace metals such as titanium, chromium, lead and vanadium. In mortar samples from different regions of Switzerland originating from the 19th and early 20th centuries, residues of granulated blast furnace slag are observable as angular glassy particles in the binder matrix. In addition, black spherical grains with greenish lustre (up to 500 micrometres in diameter), probably not ground granulated blast furnace slag, can be distinguished sporadically in thin sections. Raman microscopy as well as scanning electron microscopy coupled with energy dispersive X-ray spectroscopy (SEM-EDX) measurements have revealed, inter alia, the presence of the crystalline components plattnerite PbO2, rutile TiO2 and presumably chromite Fe(II)Cr2O4 or nichromite (Ni,Co,Fe(II))(Cr,Fe(III),Al)2O4. These findings are consistent with historical analyses, which were restricted to the determination of the elemental (not phase) composition of the raw material processed by the Ludwig von Roll ironworks. Furthermore the minerals celestine SrSO4 and zircon ZrSiO4 can be linked to bean ore and bole from Delsberg, and likewise the silicon carbide moissanite SiC, which is a reaction product of quartz sand and coke. The coherence if the results of historical chemical analyses and of modern microscopic imaging and spectroscopy methods described here pinpoints the Ludwig von Roll ironworks as the most probable supplier of the granulated blast furnace slag that was added to the mortars under investigation. The unreacted remnants exhibit defined boundaries; no hydration rims are observable despite the glassy nature of the latent hydraulic aggregate, which contains cement clinker minerals (belite and calcium aluminate) as crystalline components. Not finely ground, the spheroids are too coarse for an effective hydration reaction and act as inert filler. KW - Granulierte Hochofenschlacke KW - Raman Mikroskopie KW - REM-EDX KW - Granulated blast furnace slag KW - Raman microscopy KW - SEM-EDX PY - 2015 VL - 29 IS - 2 SP - 293 EP - 304 PB - Wernersche Verlagsgesellschaft mbH CY - Worms AN - OPUS4-36651 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Álvarez-García, J. A1 - Izquierdo-Roca, V. A1 - Pistor, P. A1 - Schmid, Thomas A1 - Pérez-Rodríguez, A. ED - Abou-Ras, D. ED - Kirchartz, T. ED - Rau, U. T1 - Raman spectroscopy on thin films for solar cells N2 - In the present chapter, the capabilities of Raman spectroscopy for the advanced characterisation of thin films for solar cells are reviewed. Raman spectroscopy is an optical, nondestructive technique based on the inelastic scattering of photons with elemental vibrational excitations in the material. The line shape and position of the Raman bands are determined by the crystalline structure and chemical composition of the measured samples, being sensitive to the presence of crystalline defects, impurities and strain. Presence of peaks characteristic of different phases also allows for the identification of secondary phases that are strongly related to the growth and process conditions of the films. All these aspects account for a strong interest in the analysis of the Raman spectra, providing a powerful nondestructive analytical tool for the structural and chemical assessment of the films. In addition, the combination of a Raman spectrometer with an optical microscope also allows for achieving a high spatial resolutions (of below 1 µm) when mapping surfaces and analyzing depth-resolved phase distributions in thin films. The present chapter is divided into four main sections: The two first ones are devoted to a revision of the Fundamentals of Raman spectroscopy (Section 17.2) and Vibrational modes in crystalline materials (Section 17.3). Section 17.4 deals with the main experimental considerations involved in the design and implementation of a Raman scattering setup. This is followed by a detailed description of the application of Raman scattering for the structural and chemico-physical analysis of thin film photovoltaic materials (Section 17.5), with the identification of crystalline structure and secondary phases, evaluation of film crystallinity, analysis of chemical composition of semiconductor alloys, characterisation of nanocrystalline and amorphous layers, stress effects and crystal orientations. This includes the description of corresponding state of the art and recent case examples that illustrate the capabilities of the Raman technique for the advanced characterisation of layers and process monitoring in thin-film photovoltaic technologies. KW - Thin-film solar cells KW - Polycrystalline materials KW - Raman spectroscopy KW - Raman microscopy PY - 2016 UR - http://eu.wiley.com/WileyCDA/WileyTitle/productCd-3527339922.html SN - 978-3-527-33992-1 SP - 469 EP - 499 PB - Wiley & Sons, Ltd. CY - Oxford, UK AN - OPUS4-37451 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dariz, P. A1 - Schmid, Thomas T1 - Phase composition and burning history of high-fired medieval gypsum mortars studied by Raman microspectroscopy N2 - The use of high-fired gypsum as binder for masonry and joint mortars or stuccowork in Central Europe in the Early and High Middle Ages was a regional specific as it depended on local gypsum deposits. The calcination technology possible at the time resulted in an assemblage of calcium sulphate phases dehydrated to different degrees and partly thermally damaged accessory minerals of the raw gypsum. Not hydrated clusters of firing products preserved in the binder matrix are a typical feature of such mortars. A novel Raman microspectroscopic approach, providing access to the burning history of individual anhydrite grains, was applied to samples from medieval South Tyrolean stucco decorations and sculptures. Beyond that, Raman microspectroscopy was employed for tracing and visualising pyrometamorphic reactions in natural impurities of the kiln run. In the discussed examples mineral thermometry indicates process temperatures above 800°C: the breakdown of magnesium-rich chlorite led to the formation of forsterite Mg2SiO4, while the thermal decomposition of dolomite CaMg(CO3)2 to periclase MgO and lime CaO yielded – after hydration and carbonation – magnesite MgCO3, CaCO3 polymorphs and magnesian calcite. Hydration of periclase in the mixed gypsum paste containing sulphate ions also resulted in magnesium sulphate hydrates, here identified in the form of hexahydrite MgSO4·6H2O. Lower burning temperatures left the accessory minerals in their pristine form, but can be traced by measuring the spectra of individual anhydrite crystals in grains of firing products and evaluating Raman band widths. Throughout the present study, calcination temperatures ranging from approx. 600°C to 900°C were determined. KW - High-fired gypsum mortar KW - Anhydrite KW - Dolomite KW - Forsterite KW - Raman microspectroscopy PY - 2019 DO - https://doi.org/10.1016/j.matchar.2019.03.013 VL - 151 SP - 292 EP - 301 PB - Elsevier Inc. AN - OPUS4-48102 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schmid, Thomas A1 - Dariz, P. T1 - Shedding light onto the spectra of lime: Raman and luminescence bands of CaO, Ca(OH)2 and CaCO3 N2 - In microscopy studies of 19th-century cement stone, we found free lime in the form of darkened spherical structures, as they were described in the literature already. When trying to determine their phase composition by Raman spectroscopy, we encountered contradictive assignments in literature spectra of the lime phases CaO, Ca(OH)2 and CaCO3 and observed strong spectral features that have been ignored or erroneously assigned so far. In this study we present Raman spectra of pure lime phases and of a naturally grown calcite crystal, burnt limestone (quick lime, mainly CaO), aged slaked lime putty (mainly Ca(OH)2), and carbonated lime putty (mainly CaCO3). Based on the results, we shed light mainly onto these two questions: (1) Does CaO have a Raman spectrum? (2) Which features in the spectra are luminescence bands that could be (and already have been) misinterpreted as Raman bands? We proof our assignment of luminescence bands in lime phases by using three different laser wavelengths for excitation, and give hypotheses on the origin of the luminescence as well as practical advices on how to identify these misleading features in Raman spectra. This article is mainly addressed to users of Raman spectroscopy in different fields of material analysis who might not be aware of the presence of interfering bands in their spectra. KW - (Free) lime KW - Lime cycle KW - Lime phases KW - Calcium compounds KW - Luminescence PY - 2015 DO - https://doi.org/10.1002/jrs.4622 SN - 0377-0486 SN - 1097-4555 VL - 46 IS - 1 SP - 141 EP - 146 PB - Wiley & Sons, Ltd. CY - Chichester AN - OPUS4-32559 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schmid, Thomas A1 - Jungnickel, Robert A1 - Dariz, P. T1 - Insights into the CaSO4–H2O System: A Raman-Spectroscopic Study N2 - Even though being the subject of natural scientific research for many decades, the system CaSO4–H2O, consisting of the five crystalline phases gypsum, bassanite, and the anhydrites III, II, and I, has left many open questions for research. Raman spectroscopy was used because of its structural sensitivity and in situ measurement capability to obtain further insight by studying phase transitions in both ex situ and in situ experiments. The findings include significant contributions to the completeness and understanding of Raman spectroscopic data of the system. The dehydration path gypsum–bassanite–anhydrite III was shown to have strong parallels to a physical drying process, which depends on many parameters beyond the burning temperature. Raman band width determination was demonstrated to enable the quantitative discrimination of α-bassanite and β-bassanite as well as the postulated three sub-forms of anhydrite II (AII), which are all based on differences in crystallinity. In the latter case, the observed continuous structural variations over increasing burning temperatures were elucidated as a combination of decreasing surface areas and healing of crystal lattice defects. We propose an only two-fold sub-division of AII into reactive “disordered AII” and much less reactive “crystalline AII” with a transition temperature of 650°C ± 50 K. KW - Gypsum KW - Bassanite KW - Hemihydrate KW - Anhydrite KW - Raman spectroscopy PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-506701 DO - https://doi.org/10.3390/min10020115 SN - 2075-163X VL - 10 IS - 2 SP - 115, 35 PB - MDPI CY - Basel AN - OPUS4-50670 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schmid, Thomas A1 - Jungnickel, R. A1 - Dariz, P. T1 - Raman band widths of anhydrite II reveal the burning history of high‐fired medieval gypsum mortars N2 - When used as a mineral binder, gypsum is thermally dehydrated and mixed with water, resulting in a paste hardening in the backreaction to calcium sulphate dihydrate (CaSO4 · 2 H2O). Although nowadays mainly hemihydratebased (CaSO4 · ½ H2O) binders are employed, higher firing temperatures in medieval kilns yielded anhydrite II (CaSO4). Except for the discrimination of the metastable phases anhydrite III and I due to different crystal structures, variations within the production temperature range of anhydrite II (approximately 300 to 1180°C) were not analytically accessible until recently. This study describes the development of an analytical technique, which is based on steady changes of band widths in room‐temperature Raman spectra of anhydrite II as a function of burning temperature. Raman microspectroscopic mapping experiments enable to pinpoint individual unreacted grains of thermal anhydrite in mortars and to discriminate them from natural anhydrites originating from the raw gypsum. The determination of band full widths at half maximum of down to 3 cm−1 and differences between them of a few tenths of wavenumbers is not a trivial task. Thus, a focus of this work is on peak fitting and strategies for correction of instrument‐dependent band broadening, which is often neglected also beyond the field of mortar analysis. Including other potential influences on band widths, burning temperatures of 400 to 900°C can be retraced in high‐fired medieval gypsum mortars with an uncertainty of approximately ± 50 K, as demonstrated with sample material of a stucco sculpture dated around 1400. KW - Analytical methods KW - Gypsum dehydration KW - High-fired gypsum mortar KW - Raman band width determination KW - Thermal anhydrite PY - 2019 DO - https://doi.org/10.1002/jrs.5632 SN - 1097-4555 VL - 50 IS - 8 SP - 1154 EP - 1168 PB - Wiley AN - OPUS4-48757 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schmid, Thomas A1 - Dariz, P. T1 - Raman Microspectroscopic Imaging of Binder Remnants in Historical Mortars Reveals Processing Conditions N2 - Binder remnants in historical mortars represent a record of the connection between the raw materials that enter the kiln, the process parameters, and the end product of the calcination. Raman microspectroscopy combines high structural sensitivity with micrometre to sub-micrometre spatial resolution and compatibility with conventional thin-sectional samples in an almost unique fashion, making it an interesting complementary extension of the existing methodological arsenal for mortar analysis. Raman spectra are vibrational fingerprints of crystalline and amorphous compounds, and contain marker bands that are specific for minerals and their polymorphic forms. Relative intensities of bands that are related to the same crystalline species change according to crystal orientations, and band shifts can be caused by the incorporation of foreign ions into crystal lattices, as well as stoichiometric changes within solid solution series. Finally, variations in crystallinity affect band widths. These effects are demonstrated based on the analysis of three historical mortar samples: micrometric distribution maps of phases and polymorphs, crystal orientations, and compositional variations of solid solution series of unreacted clinker grains in the Portland cement mortars of two 19th century castings, and the crystallinities of thermal anhydrite clusters in a high-fired medieval gypsum mortar as a measure for the applied burning temperature were successfully acquired. KW - Cement clinker remnants KW - High-fired gypsum KW - Thermal anhydrite KW - Spectroscopic imaging KW - Raman microscopy PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-515038 DO - https://doi.org/10.3390/heritage2020102 VL - 2 IS - 2 SP - 1662 EP - 1683 PB - MDPI CY - Basel AN - OPUS4-51503 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schmid, Thomas A1 - Dariz, P. T1 - Editorial for the special issue "Modern Raman spectroscopy of minerals" N2 - Raman spectroscopy provides vibrational fingerprints of chemical compounds enabling their unambiguous identification. The assignment of Raman spectra to minerals is straightforward, if appropriate reference data is accessible. Modern couplings of Raman spectroscopy with microscopy (Raman microspectroscopy) merge the high structural specificity with down to sub-micrometre spatial resolution. This analytical tool has high potential not only in the identification of minerals from natural sources but also for studying the complex microstructure and mineral distribution of both ancient and modern man-made materials. In addition to the chemical identity of minerals, Raman spectra are affected by crystal orientations (varying relative Raman band intensities); (sub)stoichiometric compositional changes (e.g., in solid solution series), traces of foreign ions, strain (the latter three shifting Raman bands); and crystallinity (changing Raman band widths), enabling a comprehensive physico-chemical characterisation of minerals. Thus, Raman spectroscopy – including its in situ measurement capabilities – provides possibilities to study mineral paragenesis in both, natural and man-made samples at the micrometre scale. While in 1928 the first experimental evidence for inelastic light scattering was provided by C. V. Raman and K. S. Krishnan by using sunlight for excitation, filters for selecting the inelastically scattered light, and their eyes for detection (later, photographic plates for acquisition of spectra were employed), modern Raman spectrometers make use of laser excitation, dispersive spectrographs and charge coupled device (CCD) detection. This Special Issue includes technological developments and applications in the field of modern Raman spectroscopy of minerals in a broad sense, from natural mineral deposits and archaeological objects to inorganic phases in man-made materials. The studied minerals include fossil resins, typical rock-forming minerals (calcite, quartz, forsterite), iron-sulphur species (e.g., mackinawite), a range of sulphates (gypsum, bassanite, anhydrite III, anhydrite II, celestine, barite, ternesite), as well as silicate minerals like garnets (e.g., almandine). KW - Raman spectroscopy KW - Raman microspectroscopy KW - Mineral identification KW - Physico-chemical characterisation of minerals KW - Mineral paragenesis PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-515041 DO - https://doi.org/10.3390/min10100860 VL - 10 SP - 860 PB - MDPI CY - Basel AN - OPUS4-51504 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schmid, Thomas A1 - Dariz, P. ED - Ziemann, M. T1 - Raman band widths of anhydrite II reveal the burning history of high-fired medieval gypsum mortars N2 - The use of high-fired gypsum as binder for masonry and joint mortars or stuccowork in Central Europe in the Early and High Middle Ages was a regional specific as it depended on local gypsum deposits. The calcination technology possible at the time resulted in an assemblage of calcium sulphate phases dehydrated to different degrees and partly thermally damaged accessory minerals of the raw gypsum. Because of the absence of medieval textbooks, the observation of high-temperature, low-pressure mineral transformations and the correlation of phases coexisting in not hydrated binder relicts in the gypsum matrix to the mineralogy of the raw material and the burning conditions constitute the only source to the historical technological know-how. The CaSO4–H2O system consists of five crystalline phases, which can be discriminated by structural analysis methods, such as Raman spectroscopy, due to obvious differences in their spectroscopic data: gypsum (CaSO4 ⋅ 2 H2O), bassanite (hemihydrate, CaSO4 ⋅ ½ H2O), anhydrite III (CaSO4), anhydrite II (CaSO4), and anhydrite I (CaSO4). Only recently, it was possible to demonstrate that small spectroscopic variations exist also within the relatively large stability range of anhydrite II from approx. 180°C to 1180°C: all Raman bands narrow with increasing burning temperature applied in the synthesis from gypsum powder. The determination of band widths of down to 3 cm-1 and differences between them of a few tenths of a wavenumber is not a trivial task. Thus, this contribution discusses peak fitting and strategies for correction of instrument-dependent band broadening. Raman maps of polished thin sections of gypsum mortars provide access to the burning histories of individual remnant thermal anhydrite grains and enable the discrimination of natural anhydrite originating from the gypsum deposit. This novel analytical method was applied to samples from medieval South Tyrolean stucco decorations and sculptures. Beyond that, Raman microspectroscopy was employed for following pyrometamorphic reactions in natural impurities of the raw material. In the presented examples mineral thermometry indicates process temperatures above 800°C: the breakdown of magnesium-rich chlorite led to the formation of forsterite Mg2SiO4, while the thermal decomposition of dolomite CaMg(CO3)2 yielded – after hydration and carbonation – magnesite MgCO3, CaCO3 polymorphs and magnesian calcite. Lower burning temperatures, which leave the accessory minerals in their pristine form, can be traced by measuring the spectra of anhydrite crystalites in grains of firing products and evaluating Raman band widths. Throughout the applications of this analytical method so far, calcination temperatures ranging from approx. 600°C to 900°C were determined. T2 - 10th International Congress on the Application of Raman Spectroscopy in Art and Archaeology CY - Potsdam, Germany DA - 03.09.2019 KW - Raman microspectroscopy KW - High-fired medieval gypsum mortars KW - Raman band width KW - Gypsum dehydration KW - Thermal anhydrite PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-496204 SP - 36 EP - 37 PB - University of Potsdam CY - Potsdam AN - OPUS4-49620 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dariz, P. A1 - Schmid, Thomas T1 - Ferruginous phases in 19th century lime and cement mortars: A Raman microspectroscopic study N2 - Raman microscopic imaging was just recently introduced into the analysis of residual Roman and Portland cement grains in 19th century cement stone, displaying evidence of the experimental adaptation of contemporary technological knowledge and practice to local circumstance. Beyond calcium ferrites, this study deals with ferruginous clinker phases that are atypical compared to present-day commercial conditions of manufacture, such as iron oxides, clinopyroxenes or pyroxenoids. Analog, microtexture, mineralogy and chemical composition of pulverized ferrosilicate slag used in the course of the 19th century as mineral additive in lime mortar reflect local resource utilization, recording the melting history within the furnace and the effectiveness of the reduction process of a single smelting event. In the case of the discussed example, chemical imaging by Raman microscopy allowed deducing a lime-rich, low-silica melt exposed to fairly reducing conditions because of the detection of the pyrometallurgic phases fayalite (Fe2SiO4), kirschsteinite (CaFeSiO4) and calcioolivine (Ca2SiO4) in zoned olivine laths and (with the melilite gehlenite, Ca2Al2SiO7) in the Interstitial matrix, cross-cut by dendritic wuestite (FeO). The presented analytical approach faces the high spatial complexity of such mortar samples by microspectroscopic imaging with micrometer lateral resolution and their chemical complexity by extracting the rich chemical information content from Raman spectra. Intensity maps of marker bands provide spatial phase distributions. Furthermore, maps of peak positions can give access to the dissemination of spectroscopically similar phases of solid solution series (e.g., olivine and calcium Aluminate ferrite) as well as varying amounts of incorporated foreign cations (e.g., in hematite). KW - Residual cement grains KW - Ferrite KW - Iron oxide KW - Slag KW - Olivine KW - Raman microspectroscopy PY - 2017 DO - https://doi.org/10.1016/j.matchar.2017.04.009 SN - 1044-5803 SN - 1873-4189 VL - 129 SP - 9 EP - 17 PB - Elsevier AN - OPUS4-40039 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dariz, P. A1 - Schmid, Thomas T1 - Temperaturindikatoren in mittelalterlichen Hochbrandgipsen: Eine Ramanmikrospektroskopische Studie N2 - Infolge der beschränkten Kontrollmöglichkeiten über die in einem Meiler oder Feldofen herrschenden Parameter konstituiert mittelalterliche Hochbrandgipse ein Gemisch aus verschiedenen Anhydritstufen. Basierend auf modernen Versuchsbränden dienen in der gealterten Gipsmatrix nicht oder nur teilweise hydratisiert erhaltene Brenngutkörner üblicherweise anhand der morphologischen Eigenschaften der Anhydritkristalle der groben Einschätzung der zumindest lokal im Ofen bzw. im stückigen Brenngut erreichten Temperaturwerte. Die bildgebende Ramanmikroskopie ermöglicht die kornspezifische Bestimmung der Hitzeeinwirkung über den Grad der sich im Ramanspektrum abbildenden thermischen Beeinträchtigung der Thermoanhydritphasen, als auch deren Unterscheidung von primärem Anhydrit aus der Gipslagerstätte, da diesen eine höhere Kristallinität kennzeichnet. Hier beispielhaft diskutierte Ramananalysen an zwei reliktischen Brenngutkörnern lassen auf Brenntemperaturen von 650°C bzw. 800°C schließen. Pyrometamorphe Phasenneubildungen der natürlichen Verunreinigungen des Rohgipses liefern aufgrund ihres Bildungs- und Stabilitätsbereiches zusätzliche Hinweise. Im Beitrag erörtert werden die an die Dehydratation von magnesiumreichem Chlorit korrelierte Genese von Forsterit sowie die Zersetzung von Dolomit zu Calcit und Periklas, welcher beim Anmachen des Mörtels zu Brucit gelöscht wird und im Laufe der Zeit in der Gipsmatrix zu Magnesit carbonatisiert; beide pyrometamorphen Reaktionen erfordern Temperaturen von über 800°C. KW - Ramanmikrospektroskopie KW - Mineralthermometer KW - Gips PY - 2018 SN - 0931-7198 VL - 32 IS - 1 SP - 69 EP - 78 PB - Wernersche Verlagsgesellschaft mbH CY - Worms AN - OPUS4-47041 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dariz, P. A1 - Jakob, C. A1 - Ectors, D. A1 - Neubauer, J. A1 - Schmid, Thomas T1 - Measuring the Burning Temperatures of Anhydrite Micrograins in a High-Fired Medieval Gypsum Mortar N2 - Typical feature of high-fired medieval gypsum mortars is a compact microstructure of squat gypsum crystals containing firing products as remains of the calcination process. So far, the burning history of the binder is estimated based on morphological characteristics of the latter. A novel Raman microspectroscopy approach provides access to the calcination temperatures of individual anhydrite grains based on quantifiable spectroscopic changes appearing due to gradual variations of crystallinity, as independently confirmed by X-ray diffraction analysis of anhydrites synthesised at temperatures between 500°C and 900°C. The approach was successfully applied to the high-fired gypsum mortar of a South Tyrolean stucco sculpture of a pieta dated around 1420. Microparticles of burned anhydrite II with firing temperatures scattered around 650°C and clusters of thermally damaged natural anhydrite II crystals from the raw material were identified and imaged. KW - Analytical methods KW - Gypsum technology KW - High-fired gypsum mortar KW - Raman microspectroscopy KW - Thermal anhydrite PY - 2017 DO - https://doi.org/10.1002/slct.201701260 VL - 2 IS - 28 SP - 9153 EP - 9156 PB - Wiley VCH Verlag AN - OPUS4-42458 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dariz, P. A1 - Wortmann, U. G. A1 - Vogl, Jochen A1 - Schmid, Thomas T1 - Beautiful Pietàs in South Tyrol (Northern Italy): local or imported works of art? N2 - The study, dedicated to Beautiful Pietàs conserved in South Tyrol (Northern Italy), aims to establish, for the first time, a connection between Austroalpine raw materials and the high-fired gypsum mortars constituting the Gothic figure groups in question. The origin and chronology of this stylistically and qualitatively differing ensemble have been subject of art historical debate for nearly a century. The discourse is dominated by three main hypotheses: itinerary of an Austrian artist versus itinerary of the work of art created in an artist’s workshop in Austria versus itinerary of the stylistic vocabulary via graphical or three-dimensional models. The comparison of the δ34S values and the 87Sr/86Sr ratios of the gypsum mortars and Austroalpine sulphate deposits (in a compilation of own reference samples and literature data) points to the exploitation of sediments in the Salzkammergut and possibly also in the evaporite district of the Eastern Calcareous Alps, thus evidencing the import of the sculptures and not the activities of local South Tyrolean or itinerant artists. Two geochronological units are distinguishable: The Pietà in the Church St. Martin in Göflan can be assigned to Upper Permian raw material, whereas the metrologically consistent sculptures in the Church of Our Lady of the Benedictine Abbey Marienberg and in the Chapel St. Ann in Mölten correlate with deposits of the Early Triassic (or the Lower-Middle Triassic transition). The medieval gypsum mortars also differ in their mineralogical characteristics, i.e. in their geologically related minor components, as in the first case, characterised by a significant proportion of primary anhydrite, natural carbonate impurities mainly consist of calcite (partly converted to lime-lump-like aggregates), whereas in the second group dolomite (or rather its hydration products after pyrometamorphic decomposition) predominates, accompanied by celestine, quartz and potassium feldspar. The Pietà in the Cathedral Maria Himmelfahrt in Bozen turned out to be made of Breitenbrunn calcareous sandstone (Leitha Mountains, Burgenland, Austria), which is why the sample is not considered in the geochemical analysis. KW - High-fired gypsum mortar KW - Sulphur isotope KW - Strontium isotope KW - Polarised light microscopy KW - Raman microspectroscopy PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-545610 DO - https://doi.org/10.1186/s40494-022-00678-6 SN - 2050-7445 VL - 10 IS - 1 SP - 1 EP - 17 PB - Springer Nature AN - OPUS4-54561 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Reuter, T. A1 - Borges de Oliveira, F. A1 - Abt, Ch. A1 - Ballach, F. A1 - Bartscher, M. A1 - Bellon, Carsten A1 - Dennerlein, F. A1 - Fuchs, P. A1 - Günnewig, O. A1 - Hausotte, T. A1 - Hess, J. A1 - Kasperl, S. A1 - Maass, N. A1 - Kimmig, W. A1 - Schielein, R. A1 - von Schmid, M. A1 - Suppes, A. A1 - Wagner, G. A1 - Watzl, Ch. A1 - Wohlgemuth, F. T1 - Introduction to “Realistic Simulation of real CT systems with a basic-qualified Simulation Software - CTSimU2“ N2 - The lack of traceability to meter of X-ray Computed Tomography (CT) measurements still hinders a more extensive acceptance of CT in coordinate metrology and industry. To ensure traceable, reliable, and accurate measurements, the determination of the task-specific measurement uncertainty is necessary. The German guideline VDI/VDE 2630 part 2.1 describes a procedure to determine the measurement uncertainty for CT experimentally by conducting several repeated measurements with a calibrated test specimen. However, this experimental procedure is cost and effort intensive. Therefore, the simulation of dimensional measurement tasks conducted with X-ray computed tomography can close these drawbacks. Additionally, recent developments towards a resource and cost-efficient production (“smart factory”) motivate the need for a corresponding numerical model of a CT system (“digital twin”) as well. As there is no standardized procedure to determine the measurement uncertainty of a CT system by simulation at the moment, the project series CTSimU was initiated, aiming at this gap. Concretely, the goal is the development of a procedure to determine the measurement uncertainty numerically by radiographic simulation. The first project (2019-2022), "Radiographic Computed Tomography Simulation for Measurement Uncertainty Evaluation - CTSimU" developed a framework to qualify a radiographic simulation software concerning the correct simulation of physical laws and functionalities. The most important outcome was a draft for a new guideline VDI/VDE 2630 part 2.2, which is currently under discussion in the VDI/VDE committee. The follow-up project CTSimU2 "Realistic Simulation of real CT systems with a basic-qualified Simulation Software" will deal with building and characterizing a digital replica of a specific real-world CT system. The two main targets of this project will be a toolbox including methods and procedures to configure a realistic CT system simulation and to develop tests to check if this replica is sufficient enough. The result will be a draft for a follow-up VDI/VDE guideline proposing standardized procedures to determine a CT system's corresponding characteristics and test the simulation (copy) of a real-world CT system which we call a "digital twin". T2 - 12th Conference on Industrial Computed Tomography (iCT) 2023 CY - Fürth, Germany DA - 27.02.2023 KW - dXCT KW - X-ray computed tomography KW - Simulation PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-589204 DO - https://doi.org/10.58286/27715 VL - 28 IS - 3 SP - 1 EP - 5 PB - NDT.net AN - OPUS4-58920 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lu, Z. C. A1 - Haist, M. A1 - Ivanov, D. A1 - Jakob, C. A1 - Jansen, D. A1 - Schmid, M. A1 - Kißling, P. A. A1 - Leinitz, Sarah A1 - Link, J. A1 - Mechtcherine, V. A1 - Neubauer, J. A1 - Plank, J. A1 - Schmidt, Wolfram A1 - Schilde, C. A1 - Schröfl, C. A1 - Sowoidnich, T. A1 - Stephan, D. T1 - Characterization data of reference cement CEM III/A 42.5N used for priority program DFG SPP 2005 "Opus Fluidum Futurum - Rheology of reactive, multiscale, multiphase construction materials" N2 - Two types of cements were selected as the reference cement in the priority program 2005 of the German Research Foundation (DFG SPP 2005). A thorough characterization of CEM I 42.5 R has been made in a recent publication. In this paper, the characterization data of the other reference cement CEM III/A 42.5 N are presented from the aspects of chemical and mineralogical compositions as well as physical and chemical properties. The characterization data of the slag, which is the second main constituent of this specific cement besides the clinker, are presented independently. For all data received, the mean values and the corresponding errors were calculated. The data shall be used for the ongoing research within the priority program. Also, researchers from outside this priority program can benefit from these data if the same materials are used. KW - Cement KW - Slag KW - Characterization KW - DFG SPP 2005 PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-568980 DO - https://doi.org/10.1016/j.dib.2020.105524 SN - 2352-3409 VL - 30 SP - 1 EP - 14 PB - Elsevier CY - Amsterdam AN - OPUS4-56898 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Demidov, Alexandr A1 - Eschlböck-Fuchs, S. A1 - Kazakov, Alexander Ya. A1 - Gornushkin, Igor B. A1 - Kolmhofer, P. J. A1 - Pedarnig, J. D. A1 - Huber, N. A1 - Heitz, J. A1 - Schmid, Thomas A1 - Rössler, R. A1 - Panne, Ulrich T1 - Monte Carlo standardless approach for laser induced breakdown spectroscopy based on massive parallel graphic processing unit computing N2 - The improved Monte-Carlo (MC) method for standard-less analysis in laser induced breakdown spectroscopy (LIBS) is presented. Concentrations in MC LIBS are found by fitting model-generated synthetic spectra to experimental spectra. The current version of MC LIBS is based on the graphic processing unit (GPU) computation and reduces the analysis time down to several seconds per spectrum/sample. The previous version of MC LIBS which was based on the central processing unit (CPU) computation requested unacceptably long analysis times of 10's minutes per spectrum/sample. The reduction of the computational time is achieved through the massively parallel computing on the GPU which embeds thousands of co-processors. It is shown that the number of iterations on the GPU exceeds that on the CPU by a factor > 1000 for the 5-dimentional parameter space and yet requires > 10-fold shorter computational time. The improved GPU-MC LIBS outperforms the CPU-MS LIBS in terms of accuracy, precision, and analysis time. The performance is tested on LIBS-spectra obtained from pelletized powders of metal oxides consisting of CaO, Fe2O3, MgO, and TiO2 that simulated by-products of steel industry, steel slags. It is demonstrated that GPU-based MC LIBS is capable of rapid multi-element analysis with relative error between 1 and 10's percent that is sufficient for industrial applications (e.g. steel slag analysis). The results of the improved GPU-based MC LIBS are positively compared to that of the CPU-based MC LIBS as well as to the results of the standard calibration-free (CF) LIBS based on the Boltzmann plot method. KW - Monte Carlo simulation KW - Parallel computing KW - Calibration-free laser-induced breakdown spectroscopy KW - Post-breakdown laser induced plasma KW - Quaternary oxides PY - 2016 DO - https://doi.org/10.1016/j.sab.2016.09.016 VL - 125 SP - 97 EP - 102 PB - Elsevier B.V. AN - OPUS4-38489 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Peters, R. A1 - Elbers, I. A1 - Undas, A. A1 - Sijtsma, E. A1 - Briffa, S. A1 - Carnell-Morris, P. A1 - Siupa, A. A1 - Yoon, T.-H. A1 - Burr, L. A1 - Schmid, D. A1 - Tentschert, J. A1 - Hachenberger, Y. A1 - Jungnickel, H. A1 - Luch, A. A1 - Meier, F. A1 - Kocic, J. A1 - Kim, J. A1 - Park, B. C. A1 - Hardy, B. A1 - Johnston, C. A1 - Jurkschat, K. A1 - Radnik, Jörg A1 - Hodoroaba, Vasile-Dan A1 - Lynch, I. A1 - Valsami-Jones, E. T1 - Benchmarking the ACEnano toolbox for characterisation of nanoparticle size and concentration by interlaboratory comparisons N2 - ACEnano is an EU-funded project which aims at developing, optimising and validating methods for the detection and characterisation of nanomaterials (NMs) in increasingly complex matrices to improve confidence in the results and support their use in regulation. Within this project, several interlaboratory comparisons (ILCs) for the determination of particle size and concentration have been organised to benchmark existing analytical methods. In this paper the results of a number of these ILCs for the characterisation of NMs are presented and discussed. The results of the analyses of pristine well-defined particles such as 60 nm Au NMs in a simple aqueous suspension showed that laboratories are well capable of determining the sizes of these particles. The analysis of particles in complex matrices or formulations such as consumer products resulted in larger variations in particle sizes within technologies and clear differences in capability between techniques. Sunscreen lotion sample analysis by laboratories using spICP-MS and TEM/SEM identified and confirmed the TiO2 particles as being nanoscale and compliant with the EU definition of an NM for regulatory purposes. In a toothpaste sample orthogonal results by PTA, spICP-MS and TEM/SEM agreed and stated the TiO2 particles as not fitting the EU definition of an NM. In general, from the results of these ILCs we conclude that laboratories are well capable of determining particle sizes of NM, even in fairly complex formulations. KW - Nanomaterials KW - Benchmarking KW - Inter-laboratory comparison KW - ACEnano KW - Characterisation KW - Size KW - Concentration PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-531852 DO - https://doi.org/10.3390/molecules26175315 SN - 1420-3049 VL - 26 IS - 17 SP - 1 EP - 23 PB - MDPI CY - Basel AN - OPUS4-53185 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Peters, R. A1 - Elbers, I. A1 - Undas, A. A1 - Sijtsma, E. A1 - Briffa, S. A1 - Carnell-Morris, P. A1 - Siupa, A. A1 - Yoon, T.-H. A1 - Burr, L. A1 - Schmid, D. A1 - Tentschert, J. A1 - Hachenberger, Y. A1 - Jungnickel, H. A1 - Luch, A. A1 - Meier, F. A1 - Kocic, J. A1 - Kim, J. A1 - Park, B. C. A1 - Hardy, B. A1 - Johnston, C. A1 - Jurkschat, K. A1 - Radnik, Jörg A1 - Hodoroaba, Vasile-Dan A1 - Lynch, I. A1 - Valsami-Jones, E. T1 - Correction: Peters et al. Benchmarking the ACEnano Toolbox for Characterisation of Nanoparticle Size and Concentration by Interlaboratory Comparisons. Molecules 2021, 26, 5315 N2 - This is a corrigendum to the original article "Benchmarking the ACEnano toolbox for characterisation of nanoparticle size and concentration by interlaboratory comparisons" that was published in the journal "Molecules", vol. 26 (2021), no. 17, article 5315. PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-554381 DO - https://doi.org/10.3390/molecules27154849 VL - 27 IS - 4849 SP - 1 EP - 3 PB - MDPI CY - Basel AN - OPUS4-55438 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Eschlböck-Fuchs, S. A1 - Huber, N. A1 - Ahamer, C. M. A1 - Hechenberger, J. G. A1 - Kolmhofer, P. J. A1 - Heitz, J. A1 - Rössler, R. A1 - Demidov, Alexander A1 - Schmid, Thomas A1 - Gornushkin, Igor B. A1 - Panne, Ulrich A1 - Pedarnig, J. D. T1 - Application of laser-induced breakdown spectroscopy for the analysis of slags in industrial steel production N2 - Laser-induced breakdown spectroscopy (LIBS) is a fast and versatile technique for (semi) quantitative element analysis of solids, liquids, gases, and particulate matter. The LIBS method is used for optical sensing in various branches of industrial production. In the contribution we review some of our recent results on LIBS analysis of slags from secondary metallurgy in industrial steel making. Major oxides in steel slags are measured at-line and after homogenization using a calibration-free (CF) method. Two approaches for CF analysis based on the Boltzmann plot method and on the calculation of synthetic spectra are compared for the analysis of quaternary oxides. We also present the research in cooperation with our industrial partners in the process-analytical chemistry network PAC. T2 - 11. Kolloquium Arbeitskreis Prozessanalytik CY - Vienna, Austria DA - 30.11.2015 KW - Laser-induced breakdown spectroscopy (LIBS) KW - Process analytical technology KW - Steel slag PY - 2015 PB - Plandruck+ Gesellschaft m.b.H. CY - Wien AN - OPUS4-39005 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ringleb, F. A1 - Eylers, K. A1 - Teubner, T. A1 - Schramm, H.-P. A1 - Symietz, Christian A1 - Bonse, Jörn A1 - Andree, Stefan A1 - Heidmann, B. A1 - Schmid, M. A1 - Krüger, Jörg A1 - Boeck, T. T1 - Growth and shape of indium islands on molybdenum at micro-roughened spots created by femtosecond laser pulses N2 - Indium islands on molybdenum coated glass can be grown in ordered arrays by surface structuring using a femtosecond laser. The effect of varying the molybdenum coated glass substrate temperature and the indium deposition rate on island areal density, volume and geometry is investigated and evaluated in a physical vapor deposition (PVD) process. The joined impact of growth conditions and spacing of the femtosecond laser structured spots on the arrangement and morphology of indium islands is demonstrated. The results yield a deeper understanding of the island growth and its precise adjustment to industrial requirements, which is indispensable for a technological application of such structures at a high throughput, for instance as precursors for the preparation of Cu(In,Ga)Se2 micro concentrator solar cells. KW - Indium islands KW - Femtosecond laser patterning KW - Diffusion KW - CIGSe micro solar cells PY - 2017 UR - http://www.sciencedirect.com/science/article/pii/S0169433216325764 DO - https://doi.org/10.1016/j.apsusc.2016.11.135 SN - 0169-4332 SN - 1873-5584 VL - 418 SP - 548 EP - 553 PB - Elsevier B.V. CY - Amsterdam AN - OPUS4-40551 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -