TY - JOUR A1 - Hübner, S. A1 - Kressirer, S. A1 - Kralisch, D. A1 - Bludszuweit-Philipp, C. A1 - Lukow, K. A1 - Jänich, I. A1 - Schilling, A. A1 - Hieronymus, Hartmut A1 - Liebner, Christian A1 - Jähnisch, K. T1 - Ultrasound and microstructures - a promising combination? N2 - Short diffusion paths and high specific interfacial areas in microstructured devices can increase mass transfer rates and thus accelerate multiphase reactions. This effect can be intensified by the application of ultrasound. Herein, we report on the design and testing of a novel versatile setup for a continuous ultrasound-supported multiphase process in microstructured devices on a preparative scale. The ultrasonic energy is introduced indirectly into the microstructured device through pressurized water as transfer medium. First, we monitored the influence of ultrasound on the slug flow of a liquid/liquid two-phase system in a channel with a high-speed camera. To quantify the influence of ultrasound, the hydrolysis of p-nitrophenyl acetate was utilized as a model reaction. Microstructured devices with varying channel diameter, shape, and material were applied with and without ultrasonication at flow rates in the mL min-1 range. The continuous procedures were then compared and evaluated by performing a simplified life cycle assessment. KW - Biphasic reactions KW - Hydrolysis KW - Interfaces KW - Liquids KW - Ultrasound PY - 2012 DO - https://doi.org/10.1002/cssc.201100369 SN - 1864-5631 SN - 1864-564X VL - 5 IS - 2 SP - 279 EP - 288 PB - Wiley-VCH CY - Weinheim AN - OPUS4-25476 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Neumann, Martin A1 - Schilling, O. A1 - Kuschke, Christian A1 - Darnstädt, A. A1 - Schubert, Sven A1 - Günther, U. A1 - Wille, Frank T1 - Requirements for management systems for manufacturing of transport packages: the new revision of BAM-GGR 011 guideline N2 - In accordance with IAEA SSR-6 para 306 a management system shall be established and implemented to ensure compliance with the relevant provisions of the IAEA regulations. BAM has issued an update of the guideline: the BAM-GGR 011. The new revision describes necessary quality assurance measures for design, manufacture, testing, documentation, use, maintenance and inspection of packagings for package designs requiring competent authority approval for the transport of radioactive material. The measures can be categorised as system-related and design-related. They are independently approved and monitored by the German competent authority BAM and its authorised expert (BAM/T). The qualification of the organisation applying for the design approval certificate is reviewed in the context of the design approval procedure. The quality assurance measures for manufacture consist of three main steps. Pre-assessment of manufacturing documents such as quality plans, specifications etc., Manufacturing inspections according the pre-assessed documents and inspection before commissioning including documentation review. Periodic inspections during operation as well as relevant specifications for use and maintenance ensure that the properties specified in the approval certificate are preserved over the package life time. Special provisions for the return on experience regarding operational feedback for design, manufacture, use, maintenance and inspection are given. Special focus shall be given here to the rearranged and meanwhile established system of manufacturing inspections. This includes more transparent roles for a) the Producers authorised inspection 11282 representative, b) the independent inspection expert (S), acting on behalf of the manufacturer with acceptance of BAM, and c) BAM or its authorised expert (BAM/T). Additional attention shall be drawn to the management of deviations during manufacturing and provisions for maintenance and periodic inspections. T2 - 19th International Symposium on the Packaging and Transportation of Radioactive Materials PATRAM 2019 CY - New Orleans, LA, USA DA - 04.08.2019 KW - Quality assurance KW - Transport KW - Manufacturing KW - Surveillance KW - Radioactive material PY - 2019 SP - Paper 1128, 1 AN - OPUS4-49059 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lak, A. A1 - Thünemann, Andreas A1 - Schilling, M. A1 - Ludwig, F. T1 - Resolving particle size modality in bi-modal iron oxide nanoparticle suspensions N2 - Particle size modality in bi-modal iron oxide suspensions was resolved by exploiting complex ac-susceptibility (ACS), small angle X-ray scattering (SAXS) and photon cross-correlation spectroscopy. To explain dynamic magnetic response of bi-modal suspensions, the Debye model was expanded to a linear superposition form allowing for the contribution of both particle fractions. This modified and adopted model is able to resolve the bi-modal particle size distributions. The SAXS curves of mono- and bi-modal suspensions were fitted well using a Monte Carlo simulation scheme, allowing the detection of bi-modal particle size distributions with high precision. KW - Iron oxide nanoparticle KW - Bi-modal size distribution characterization KW - Complex ac-susceptibility KW - Small angle X-ray scattering KW - Modeling KW - Nanotechnology KW - SAXS KW - Nanoparticles PY - 2015 DO - https://doi.org/10.1016/j.jmmm.2014.08.050 SN - 0304-8853 VL - 380 SP - 140 EP - 143 PB - Elsevier CY - Amsterdam AN - OPUS4-32563 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bayerlein, Bernd A1 - Hanke, T. A1 - Muth, Thilo A1 - Riedel, Jens A1 - Schilling, Markus A1 - Schweizer, C. A1 - Skrotzki, Birgit A1 - Todor, A. A1 - Moreno Torres, Benjami A1 - Unger, Jörg F. A1 - Völker, Christoph A1 - Olbricht, Jürgen T1 - A Perspective on Digital Knowledge Representation in Materials Science and Engineering N2 - The amount of data generated worldwide is constantly increasing. These data come from a wide variety of sources and systems, are processed differently, have a multitude of formats, and are stored in an untraceable and unstructured manner, predominantly in natural language in data silos. This problem can be equally applied to the heterogeneous research data from materials science and engineering. In this domain, ways and solutions are increasingly being generated to smartly link material data together with their contextual information in a uniform and well-structured manner on platforms, thus making them discoverable, retrievable, and reusable for research and industry. Ontologies play a key role in this context. They enable the sustainable representation of expert knowledge and the semantically structured filling of databases with computer-processable data triples. In this perspective article, we present the project initiative Materials-open-Laboratory (Mat-o-Lab) that aims to provide a collaborative environment for domain experts to digitize their research results and processes and make them fit for data-driven materials research and development. The overarching challenge is to generate connection points to further link data from other domains to harness the promised potential of big materials data and harvest new knowledge. KW - Data infrastructures KW - Digital representations KW - Digital workflows KW - Knowledge graphs KW - Materials informatics KW - Ontologies KW - Vocabulary providers PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-546729 DO - https://doi.org/10.1002/adem.202101176 SN - 1438-1656 SP - 1 EP - 14 PB - Wiley-VCH GmbH CY - Weinheim AN - OPUS4-54672 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schilling, Richard A1 - Oehrl, A. A1 - Wischerhoff, E. A1 - Schukar, Marcus T1 - A fibre optic temperature sensor based on thermoresponsive polymer N2 - We present a temperature sensor based on a polymer exhibiting a Lower Critical Solution Temperature (LCST) in aqueous solution encapsulated in a capillary. Parameters are chosen such that the solution exhibits a cloud point in a temperature range of 30° C to 39°C. The characteristic of thermoresponsive polymers with an LCST, is that above that temperature phase separation of the polymer takes place which leads to a temperature-dependent formation of a cloudy suspension. An optical intensity measurement over the desired temperature range is established by an increase of optical attenuation inside the polymer solution caused by a rising temperature. For our purpose, the polymer capillary is connected to transmitter and receiver via a Polymer Optical Fibre (POF). Our intensity measurement is, to the best of our knowledge, a novel method and can be considered simple when compared to existing fibre-based temperature measurement techniques. Due to the lack of electrical components at the probe, this sensor is suitable for measurements in strong electromagnetic fields and environments for which flying sparks are hazardous, i.e., inflammable fluids or gases. Furthermore, all manufactured sensors share the same temperature dependence and, therefore, are well-suited for comparative measurement, e.g., flow measurement systems. With the given temperature range, a body temperature measurement is also suitable. T2 - European Workshop on Optical Fibre Sensors (EWOFS 2023) CY - Mons, Belgium DA - 23.05.2023 KW - Thermoresponsive polymer KW - Aqueous polymer solution KW - Temperature sensor KW - LCST KW - POF PY - 2023 DO - https://doi.org/https://doi.org/10.1117/12.2678418 SP - 12643-69 PB - SPIE CY - Bellingham, Wash. AN - OPUS4-57735 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schilling, Richard A1 - Oehrl, A. A1 - Wischerhoff, E. A1 - Wosniok, Aleksander A1 - Schukar, Marcus T1 - Fiber-Optic Thermoresponsive Polymer-based Temperature Sensor for Process Monitoring N2 - We present a high-precision fiber-optic temperature sensor based on a polymer possessing a Lower Critical Solution Temperature (LCST) in aqueous solution encapsulated in a capillary. For a temperature higher than the LCST the transparent homogenous polymer solution changes into a suspension which forms an opaque fluid. The resulting temperature-dependent turbidity influences the transmission characteristics measured using a simple fiber-optic system. The presented development provides a small-sized, robust temperature sensor, patented by the BAM (patent nr.: EP 3 043 161 B1), easy to integrate in many application fields, especially for process monitoring. T2 - European Workshop on Optical Fibre Sensors (EWOFS 2023) CY - Mons, Belgium DA - 23.05.2023 KW - Thermoresponsive polymer KW - Aqueous polymer solution KW - Temperature sensor KW - LCST KW - POF PY - 2023 AN - OPUS4-57739 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Winkler, T. A1 - Hoenig, E. A1 - Huber, G. A1 - Janssen, R. A1 - Fritsch, D. A1 - Gildenhaar, Renate A1 - Berger, Georg A1 - Morlock, M.M. A1 - Schilling, A.F. T1 - Osteoclastic bioresorption of biomaterials: Two- and three-dimensional imaging and quantification N2 - Purpose: Bioresorbable materials have been developed in the hope that the body will replace them with newly formed tissue. The first step of this remodeling process in bone is the bioresorption of the material by osteoclasts. The aim of this study was to analyze osteoclastic resorption of biomaterials in vitro using the commonly used two-dimensional methods of light-microscopy (LM) and scanning electron microscopy (SEM) in comparison with infinite focus microscopy (IFM), a recently developed imaging method allowing for three-dimensional surface analysis. Methods: Human hematopoietic stem cells were cultivated in the presence of the cytokines M-CSF and RANK-L for 4 weeks directly on dentin and a calcium phosphate cement. Osteoclast development was surveyed with standard techniques. After removal of the cells, resorption was characterized and quantified by LM, SEM and IFM. Results: Osteoclast cultures on the biomaterials presented the typical osteoclast-specific markers. On dentin samples LM, SEM as well as IFM allowed for discrimination of resorption. Quantification of the resorbed area showed a linear correlation between the results (LM vs. SEM: r=0.996, p=0.004; SEM vs. IFM: r=0.989, p=0.011; IFM vs. LM: r=0.995). It was not possible to demarcate resorption pits on GB14 using LM or SEM. With IFM, resorption on GB14 could be visualized and quantified two- and three-dimensionally. KW - Biomaterial KW - Three-dimensional KW - IFM KW - Osteoclast KW - Dentin KW - Calcium phosphate PY - 2010 SN - 0391-3988 VL - 33 IS - 4 SP - 198 EP - 203 PB - Wichtig Ed. CY - Milano [u.a.] AN - OPUS4-21621 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Winkler, T. A1 - Hoenig, E. A1 - Gildenhaar, Renate A1 - Berger, Georg A1 - Fritsch, D. A1 - Janssen, R. A1 - Morlock, M.M. A1 - Schilling, A.F. T1 - Volumetric analysis of osteoclastic bioresorption of calcium phosphate ceramics with different solubilities N2 - Commonly, to determine osteoclastic resorption of biomaterials only the resorbed area is measured. The depth of the resorption pit, however, may also be important for the performance of a material. To generate such data we used two calcium phosphate ceramics (Ca10 and Ca2). The solubility of the materials was determined according to DIN EN ISO 10993-14. They were scanned three-dimensionally using infinite focus microscopy and subsequently cultivated for 4 weeks in simulated body fluid without (control) or with human osteoclasts. After this cultivation period osteoclasts number was determined and surface changes were evaluated two- and three-dimensionally. Ca10 and Ca2 showed solubilities of 11.0 ± 0.5 and 23.0 ± 2.2 mg g-1, respectively. Both materials induced a significant increase in osteoclast number. While Ca10 did not show osteoclastic resorption, Ca2 showed an increased pit area and pit volume due to osteoclastic action. This was caused by an increased average pit depth and an increased number of pits, while the average area of single pits did not change significantly. The deduced volumetric osteoclastic resorption rate (vORR) of Ca2 (0.01–0.02 µm3 µm-2 day-1) was lower than the remodelling speed observed in vivo (0.08 µm3 µm-2 day-1), which is in line with the observation that implanted resorbable materials remain in the body longer than originally expected. Determination of volumetric indices of osteoclastic resorption might be valuable in obtaining additional information about cellular resorption of bone substitute materials. This may help facilitate the development of novel materials for bone substitution. KW - Biodegradation KW - Surface analysis KW - Simulated body fluid KW - Osteoclasts KW - Calcium phosphate ceramics PY - 2010 DO - https://doi.org/10.1016/j.actbio.2010.04.015 SN - 1742-7061 VL - 6 IS - 10 SP - 4127 EP - 4135 PB - Elsevier CY - Amsterdam AN - OPUS4-22554 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -