TY - CONF A1 - Cabeza, Sandra A1 - Bruno, Giovanni A1 - Mishurova, Tatiana T1 - Characterization of multiphase metal matrix composites by means of CT and neutron diffraction N2 - The present study examines the relationship between the microstructure of multiphase metal matrix composites and their damage mechanisms. The matrix AlSi12CuMgNi was combined with 15% vol. Al₂O₃ (short fibers), and with 7% vol. Al₂O₃ + 15% vol. SiC (short fibers and whiskers, respectively). The experimental approach encompasses 3D microstructure characterization by means of computed tomography of samples (a) as-cast, (b) after heat treatment, and (c) after compression tests at room temperature. The volume fraction of different phases, their distribution, their orientation, and the presence of defects and damage are studied. The influence of the addition of SiC particles on mechanical properties of composite was investigated. Phase-specific load partition analysis for samples with fiber plane parallel to load was performed by using neutron diffraction (ND) during in-situ compression. ND results show damage in the Si phase, while Al₂O₃ short fibers carry load without damage until failure. The computed tomography observations confirm the load partition analysis. T2 - WCNDT CY - München, Germany DA - 13.06.2016 KW - thermal treatment KW - synchrotron CT KW - neutron diffraction KW - composite KW - aluminum KW - residual stress PY - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-365499 AN - OPUS4-36549 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Cabeza, Sandra A1 - Mishurova, Tatiana A1 - Bruno, Giovanni A1 - Garcés, G. T1 - The role of reinforcement orientation on the damage evolution of AlSi12CuMgNi + 15% Al2O3 under compression N2 - Internal damage of an AlSi12CuMgNi alloy reinforced with planar random short fibres has been investigated after compression. This damage strongly influences the load partition between matrix and reinforcement. For fibres perpendicular to the applied load, breakage and interconnected cracks appear in significantly higher volume fraction than with fibres parallel to load. KW - Neutron Diffraction KW - Damage KW - Metal Matrix Composites KW - Load Partition KW - Synchrotron CT PY - 2016 U6 - https://doi.org/10.1016/j.scriptamat.2016.05.023 SN - 1359-6462 VL - 122 SP - 115 EP - 118 PB - Elsevier B.V. CY - Amsterdam, Netherlands AN - OPUS4-36357 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pérez, P. A1 - Cabeza, Sandra A1 - Garcés, G. A1 - Adeva, Paloma T1 - Influence of long period stacking ordered phase arrangements on thecorrosion behaviour of extruded Mg97Y2Zn1 alloy N2 - The influence of second phase arrangements on the corrosion resistance of extruded Mg97Y2Zn1 alloy has been evaluated in a 0.1 M NaCl solution. The microstructure of the alloy consists of a high volume fraction of coarse elongated particles of a long period stacking ordered phase aligned along the extrusion direction. Corrosion rate of transversal sections is lower than that of longitudinal sections. Such difference is attributed to the different orientation of second phases in longitudinal and transversal sections. The corrosion front advances mainly perpendicular to the surface in transversal samples while perpendicular and lateral growth occur in longitudinal samples KW - passive films KW - Magnesium alloys KW - anodic dissolution PY - 2016 U6 - https://doi.org/10.1016/j.corsci.2016.02.024 SN - 0010-938X VL - 107 SP - 107 EP - 112 PB - Elsevier Ltd. CY - Oxford, UK AN - OPUS4-36358 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Garcés, G. A1 - Perez, P. A1 - Cabeza, Sandra A1 - Lin, H.K. A1 - Kim, S. A1 - Gan, W. A1 - Adeva, Paloma T1 - Reverse tension /compression asymmetry of a Mg–Y–Zn alloys N2 - Room temperature mechanical behavior of extruded Mg–Y–Zn alloys with varying fractions of LPSO phase was studied in tension and compression along the extrusion direction. The microstructure is characterized by elongated LPSO fibers along the extrusion direction within the magnesium matrix. Moreover, the magnesium matrix presents a bimodal grain structure with dynamically-recrystallized grains and deformed, elongated grains with the basal plane parallel to the extrusion direction. The beginning of plasticity depends on the volume fraction of deformed and DRX grains. Alloys with low volume fraction of LPSO phase(o10vol%),with a high volume fraction of deformed grains, show the typical behavior of extruded magnesium alloys where yield stress in tension is higher than in compression. This effect is, however, reversed as the volume fraction of the LPSO phase increases since DRX grains are majority. KW - plasticity KW - Magnesium alloy KW - LPSO PY - 2015 U6 - https://doi.org/doi:10.1016/j.msea.2015.09.003 VL - 647 SP - 287 EP - 293 PB - Elsevier B.V. CY - Amsterdam, Netherlands AN - OPUS4-36359 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bruno, Giovanni A1 - Cabeza, Sandra A1 - Mishurova, Tatiana A1 - Garcés, G. A1 - Requena, G. T1 - The role of reinforcement orientation on the damage evolution of AlSi12CuMgNi +15% Al2O3 under compression N2 - Internal damage of an AlSi12CuMgNi alloy reinforced with planar randomshort fibres has been investigated after compression. This damage strongly influences the load partition between matrix and reinforcement. For fibres perpendicular to the applied load, breakage and interconnected cracks appear in significantly higher volume fraction than with fibres parallel to load. KW - Metal Matrix Composites KW - Damage KW - Load partition KW - Synchrotron CT KW - Neutron diffraction PY - 2016 VL - 122 SP - 115 EP - 118 PB - Elsevier Ltd. AN - OPUS4-37975 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bruno, Giovanni A1 - Sevostianov, I. A1 - Cabeza, Sandra A1 - Mishurova, Tatiana T1 - Average phase stress concentrations in multiphase metal matrix composites under compressive loading N2 - We develop a model to predict average over individual phases stress concentrations in a multiphase metal matrix composite under compressive loading. The model accounts for matrix plasticity through variation of the shear modulus with applied stress and for frac- ture of filler through change in the shape of the particles. Three micromechanical models are compared –non interaction approximation, Mori–Tanaka–Benveniste (MTB) scheme, and Maxwell scheme. Comparison with the experimental measurements of Cabeza et al. (2016) shows that Maxwell scheme generally predicts the stress concentration with satis- factory accuracy. Results of MTB scheme vary depending on the loading case and ignoring of the interaction leads to substantial overestimation of the stresses. KW - Average phase stress concentrations KW - metal matrix composite KW - multiphase composite PY - 2016 U6 - https://doi.org/10.1016/j.ijengsci.2016.06.004 SN - 0020-7225 VL - 106 SP - 245 EP - 261 PB - Elsevier Ltd. AN - OPUS4-37738 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Cabeza, Sandra A1 - Bruno, Giovanni A1 - Mishurova, Tatiana T1 - Characterization of multiphase metal matrix composites by means of CT and neutron diffraction N2 - The present study examines the relationship between the microstructure of multiphase MMC and their damage mechanisms. The matrix AlSi12CuMgNi was combined with 15% vol. Al2O3 (short fibres) and with 7% vol. Al2O3 + 15% vol. SiC (short fibres and whiskers, respectively). The experimental approach encompasses 3D microstructure characterization by means of computed tomography of samples (a) as-received, (b) after heat treatment, and (c) after compression tests at room temperature. The volume fraction of different phases, their distribution, their orientation and the presence of defects and damage are studied. Influence of addition of SiC whiskers on mechanical properties of composite was investigated. Phase-specific load partition analysis for samples with fibre plane parallel to load was perform by using neutron diffraction measurements during in-situ compression. It shows damage in the Si phase, while Al2O3 short fibres carry load without damage until failure. The computed tomography observations confirm the load partition analysis. T2 - World Non Destructive Testing CY - München, Germany DA - 11.06.2016 KW - CT KW - Neutron diffraction KW - Aluminium KW - Composite PY - 2016 AN - OPUS4-38395 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bruno, Giovanni A1 - Cabeza, Sandra A1 - Kromm, Arne A1 - Stegemann, Robert A1 - Lyamkin, Viktor A1 - Boin, Mirko T1 - Neutron diffraction: the forgotten non-destructive technique for residual stress analysis … and more N2 - 3-D Stress Analysis (Bulk) Stress mapping Thick (and thin) films & Interfaces Bulk high temperature Real time In-situ testing: Large sample environment (Stress rigs, Furnaces, …) Neutrons and Synchrotron Radiation allow all this because they are FASTER , DEEPER and MORE PRECISE than lab equipment (Flux)(Energy)(Parallel Beam) T2 - World Non Destructive Testing CY - München, Germany DA - 11.06.2016 KW - Neutron diffraction KW - Stress analysis PY - 2016 AN - OPUS4-38396 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Cabeza, Sandra A1 - Onorbe, Elvira A1 - Garces, Gerardo A1 - Perez, Pablo A1 - Klaus, Manuela A1 - Genzel, Christoph A1 - Adeva, Paloma T1 - The evolution of internal strain in Mg-Y-Zn alloys with a long period stacking ordered phase N2 - The load partition in Mg-Y-Zn system is studied by means of synchrotron diffraction. in-situ tensile tests disclose LPSO phases were for the first time proved to behave as an efficient reinforcement in Mg-Y-Zn alloys, therefore they could be treated as “short-fibre composite” for the modeling of mechanical behaviour. T2 - MECASENS CY - Grenoble, France DA - 16.09.2015 KW - Magnesium KW - LPSO KW - Synchrotron diffraction KW - Load partition PY - 2011 AN - OPUS4-38397 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Cabeza, Sandra A1 - Garcés, G. A1 - Pérez, P. A1 - Andrade, C. A1 - Adeva, Paloma T1 - Low alloyed Mg-Y/RE-Zn alloys: mechanical and corrosion behaviour N2 - Mg-Y,RE-Zn systems present second phases with high thermal stability, promoting the increase of strength and creep resistance at high temperatures. Mg and its alloys have a potential application as biomaterials due to their biocompatibility and degradation behaviour. The dominant corrosion mechanism in those alloys is the microgalvanic corrosion through coupling of the more noble second phases with the Mg matrix, and therefore a low concentration of those was sought. T2 - Mg 2015 CY - Jeju, South Korea DA - 12.10.2015 KW - Magnesium KW - LPSO KW - Corrosion behaviour KW - Mechanichal behaviour PY - 2015 AN - OPUS4-38398 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -