TY - CONF A1 - Burnage, Samual Charles A1 - Bell, Jérémy A1 - Gawlitza, Kornelia A1 - Wan, Wei A1 - Rurack, Knut T1 - Microfluidic Platform for Functionalisation, Extraction and Detection of Phosphorylated Amino Acids Using Fluorescent Sensory Particles N2 - The reliable identification and quantification of phosphorylated amino acids, peptides and proteins is one of the key challenges in contemporary bioanalytical research, noteworthy, to diagnose and treat diseases at an early developmental stage. Miniaturised sensing devices like microfluidic chips combined with “smart” detection chemistry, simple data assessment, processing and presentation are very attractive for benchtop use in clinical environments. We developed novel synthetic probes targeting phosphorylated amino acids, based on core-shell microparticles consisting of a silica core coated with a molecularly imprinted polymer (MIP) shell. These “plastic antibodies” are extremely robust, resist denaturing solvents and elevated temperatures, can be reproducibly produced at low cost, and potentially overcome many of the practical problems in current bioanalytical detection strategies. The MIP layer contains a fluorescent probe monomer, binds selectively to phosphorylated tyrosine (pTyr) with a significant imprinting factor higher than 3.5 and responds with a “lighting-up” of its fluorescence accompanied by the development of a strongly red-shifted emission band toward the analyte. In analogy to our previous work [4], the bead-based ratiometric detection scheme has also been successfully transferred to a microfluidic chip format to demonstrate its applicability to rapid assays. Such a miniaturised device could yield an automated pTyr measurement system in the future. The setup was built by coupling a modular microfluidic system [5] for amino acid functionalisation (Fmoc protection) and a multi-layer PDMS/Teflon/glass microfluidic chip [6] for buffering, extraction (micropillars co-flow extraction) and selective adsorption on the MIP core-shell particles. A miniaturised optical assembly for low-light fluorescence measurements was also developed. Based on small opto-electronic parts and optical fibres, the emission from the MIP particles upon addition of pTyr concentrations from 0.5 – 200 μM could be monitored in real-time. T2 - IMA 2019 CY - Ioaninna, Greece DA - 22.09.2019 KW - MIPs KW - Microfluidics KW - Fluorescence KW - Sensing PY - 2019 AN - OPUS4-49201 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Burnage, Samual Charles A1 - Bell, Jérémy A1 - Gawlitza, Kornelia A1 - Wan, Wei A1 - Rurack, Knut T1 - Microfluidic Platform for Functionalisation, Extraction and Detection of Phosphorylated Amino Acids Using Fluorescent Sensory Particles N2 - The reliable identification and quantification of phosphorylated amino acids, peptides and proteins is one of the key challenges in contemporary bioanalytical research, noteworthy, to diagnose and treat diseases at an early developmental stage1. Miniaturised sensing devices like microfluidic chips combined with “smart” detection chemistry, simple data assessment, processing and presentation are very attractive for benchtop use in clinical environments. We developed novel synthetic probes targeting phosphorylated amino acids, based on core-shell microparticles consisting of a silica core coated with a molecularly imprinted polymer (MIP) shell. These “plastic antibodies” are extremely robust, resist denaturing solvents and elevated temperatures, can be reproducibly produced at low cost, and potentially overcome many of the practical problems in current bioanalytical detection strategies. The MIP layer contains a fluorescent probe monomer, binds selectively to phosphorylated tyrosine (pY) with a significant imprinting factor higher than 3.5 and responds with a “lighting-up” of its fluorescence accompanied by the development of a strongly red-shifted emission band toward the analyte. In analogy to our previous work4, the bead-based ratiometric detection scheme has also been successfully transferred to a microfluidic chip format to demonstrate its applicability to rapid assays. Such a miniaturised device could yield an automated pY measurement system in the future. The setup was built by coupling a modular microfluidic system5 for amino acid functionalisation (Fmoc protection) and, as shown in Figure 1, a multi-layer PDMS/Teflon/glass microfluidic chip6 for buffering, extraction (micropillars co-flow extraction) and selective adsorption on the MIP core-shell particles. A miniaturised optical assembly for low-light fluorescence measurements was also developed. Based on small opto-electronic parts and optical fibres, the emission from the MIP particles upon addition of pY concentrations from 0.5-200 μM could be monitored in real-time. T2 - GSS2019 CY - BAM Adlershof, Berlin, Germany DA - 29.08.2019 KW - MIPs KW - Microfluidics KW - Sensing KW - Fluorescence PY - 2019 AN - OPUS4-49202 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Burnage, Samual Charles A1 - Gawlitza, Kornelia A1 - Sarma, Dominik A1 - Wan, Wei A1 - Bell, Jérémy A1 - Rurack, Knut T1 - Combination of Fluorescent Molecularly Imprinted Polymers and Microfluidics for the Detection of Cancer Biomarker Phosphorylated Tyrosine N2 - Cancer is modern medicine’s biggest challenge. It is now thought to be responsible for one in six deaths worldwide making early diagnosis, and treatment thereon, essential for better prognoses1. Protein phosphorylation is a post-translational modification of particular interest as a biomarker in the understanding of neurodegenerative diseases and a number of cancer pathways. There is therefore a need for robust, fast and low-cost techniques for the detection of these phosphorylations. Fluorescent molecularly imprinted polymers (MIPs) are a cheap and selective material for both the extraction and detection of a multitude of analytes. Often referred to as “plastic antibodies”, MIPs provide added robustness and chemical stability compared to their natural counterparts. Application of these fluorescent MIPs to a microfluidic lab-on-a-chip platform offers a fast, versatile method for the detection of biomarkers containing phosphorylated amino-acids such as phosphorylated tyrosine. Here, we present a tuneable core-shell MIP system consisting of a polystyrene core, silica inner-shell and MIP outer-shell. The MIP outer-shell contains a urea-based fluorescent probe monomer co-polymerised into the polymer matrix that can detect phosphorylated-tyrosine based on a change in its optical properties. The phosphate group interacts with the fluorescent probe via hydrogen bonding interactions yielding a fluorescence enhancement in organic solvents. The fluorescent MIPs are to be applied to a microfluidic platform, for rapid extraction of the analyte from the aqueous sample phase and simple optical detection in the organic phase that contains the MIP microparticles. T2 - Rapid Methods Europe 2018 (RME2018) CY - Amsterdam, The Netherlands DA - 05.11.2018 KW - Molecularly Imprinted Polymers KW - Microfluidics KW - Fluorescent MIPs KW - MIPs KW - Phosphorylated Tyrosine KW - Biomarker PY - 2018 AN - OPUS4-47019 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Burnage, Samual A1 - Bell, Jérémy A1 - Wan, Wei A1 - Kislenko, Evgeniia A1 - Rurack, Knut T1 - Combining a hybrid chip and tube microfluidic system with fluorescent molecularly imprinted polymer (MIP) core–shell particles for the derivatisation, extraction, and detection of peptides with N-terminating phosphorylated tyrosine JF - Lab on a Chip N2 - The reliable identification and quantitation of phosphorylated amino acids, peptides and proteins is one of the key challenges in contemporary bioanalytical research, an area of particular interest when attempting to diagnose and treat diseases at an early stage. We have developed a synthetic probe for targeting phosphorylated amino acids, based on core–shell submicron-sized particles consisting of a silica core, coated with a molecularly imprinted polymer (MIP) shell. The MIP layer contains a fluorescent probe crosslinker which binds selectively to phosphorylated tyrosine (pY) moieties with a significant imprinting factor (IF) and responds with a "light-up” fluorescence signal. The bead-based ratiometric detection scheme has been successfully transferred to a microfluidic chip format and its applicability to rapid assays has been exemplarily shown by discriminating a pY-terminating oligopeptide against its nonphosphorylated counterpart. Such miniaturised devices could lead to an automated pY or pY N-terminated peptide measurement system in the future. The setup combines a modular microfluidic system for amino acid derivatisation, extraction (by micropillar co-flow) and selective adsorption and detection with the fluorescent MIP core–shell particle probes. A miniaturised optical assembly for low-light fluorescence measurements was also developed, based on miniaturised opto-electronic parts and optical fibres. The emission from the MIP particles upon binding of pY or pY N-terminated peptides could be monitored in real-time. KW - Microfluidics KW - Molecularly imprinted polymers KW - Phosphorylated peptides KW - Fluorescence KW - Core-shell particles PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-569204 DO - https://doi.org/10.1039/d2lc00955b SN - 1473-0197 VL - 23 IS - 3 SP - 466 EP - 474 PB - Royal Society of Chemistry CY - Cambridge AN - OPUS4-56920 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -