TY - JOUR A1 - van Wasen, S. A1 - You, Yi A1 - Beck, S. A1 - Riedel, Jens A1 - Volmer, D. A. T1 - Laser Ablation Secondary Electrospray Ionization for In Situ Mass Spectrometric Interrogation of Acoustically-Levitated Droplets N2 - The composition of acoustically levitated droplets was probed by a novel combination of mid-IR laser evaporation and subsequent postionization via secondary electrospray ionization. The combination of microliter samples and subnanoliter sampling provided time-resolved interrogation of droplets and allowed for a kinetic investigation of the laser-induced release of the analyte, which was found to strongly depend on the analytes. The observed substancespecific delayed release of the analytes permitted baseline-separated discrimination of the analytes, ideal for the study of complex samples. The additionally applied postionization scheme was found to enable efficient detection of small volatile compounds as well as peptides. The detection of small molecules and peptides occurred under very different sampling geometries, pointing to two distinct underlying ionization mechanisms. Overall, our results suggest that the experimental setup presented in this study can serve as a widely applicable platform to study chemical reactions in acoustically levitated droplets as model reactors. KW - Acoustic levitation KW - Mass spectrometry KW - Electrospray KW - Laser ablation PY - 2022 U6 - https://doi.org/10.1021/acs.analchem.2c03800 SN - 0003-2700 VL - 2022 SP - 1 EP - 5 PB - ACS Publications CY - Washington AN - OPUS4-56531 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - van Wasen, S. A1 - You, Yi A1 - Beck, S. A1 - Riedel, Jens A1 - Volmer, D. T1 - Quantitative Analysis of Pharmaceutical Drugs Using a Combination of Acoustic Levitation and High Resolution Mass Spectrometry N2 - A combination of acoustic levitation, laser vaporization, and atmospheric pressure chemical ionization mass spectrometry (APCI-MS) is presented in this study that enabled sensitive analysis of pharmaceutical drugs from an aqueous sample matrix. An unfocused pulsed infrared laser provided contactless sample desorption from the droplets trapped inside an acoustic levitator by activation of the OH stretching band of aqueous and alcoholic solvents. Subsequent atmospheric pressure chemical ionization was used between the levitated droplet and the mass spectrometer for postionization. In this setup, the unfocused laser gently desorbed the analytes by applying very mild repulsive forces. Detailed plume formation studies by temporally resolved schlieren experiments were used to characterize the liquid gas transition in this process. In addition, the role of different additives and solvent composition was examined during the ionization process. The analytical application of the technique and the proof-of-concept for quantitative analysis were demonstrated by the determination of selected pharmaceutical drugs in aqueous matrix with limits of quantification at the lower nanomolar level and a linear dynamic range of 3–4 orders of magnitude. KW - Atmospheric Pressure Chemical Ionization KW - Ultrasonic Levitation KW - Mass Spectrometry KW - Laser Desorption PY - 2021 U6 - https://doi.org/10.1021/acs.analchem.1c00762 VL - 93 IS - 15 SP - 6019 EP - 6024 PB - ACS AN - OPUS4-52470 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - van Wasen, S. A1 - You, Yi A1 - Beck, S. A1 - Riedel, Jens A1 - Volmer, D. A. T1 - Miniaturized Protein Digestion Using Acoustic Levitation with Online High Resolution Mass Spectrometry N2 - The combination of acoustically levitated droplets, mid-IR laser evaporation, and subsequent post-ionization by secondary electrospray ionization was applied for monitoring the enzymatic digestion of various proteins. Acoustically levitated droplets are an ideal, wall-free model reactor, readily allowing compartmentalized microfluidic trypsin digestions. Time-resolved interrogation of the droplets yielded real-time information on the progress of the reaction and thus provided insights into reaction kinetics. After 30 min of digestion in the acoustic levitator, the obtained protein sequence coverages were identical to the reference overnight digestions. Importantly, our results clearly demonstrate that the applied experimental setup can be used for the real-time investigation of chemical reactions. Furthermore, the described methodology only uses a fraction of the typically applied amounts of solvent, analyte, and trypsin. Thus, the results exemplify the use of acoustic levitation as a green analytical chemistry alternative to the currently used batch reactions. KW - Acoustic levitation KW - Protein analysis KW - Mass spectrometry PY - 2023 U6 - https://doi.org/10.1021/acs.analchem.2c05334 VL - 95 SP - 4190 EP - 4195 PB - ACS Publications AN - OPUS4-57053 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Krüger, Oliver A1 - Adam, Christian A1 - Hobohm, J. A1 - Basu, S. A1 - Kuchta, K. A1 - van Wasen, Sebastian T1 - Recycling oriented comparison of mercury distribution in new and spent fluorescent lamps and their potential risk N2 - This study compares the mercury distribution in the vapor phase, the phosphor powder and the glass matrix of new and spent fluorescent lamps. The spent fluorescent lamps were obtained at the collection yards of a public waste management company in Hamburg, Germany. An innovative systematic sampling method is utilized to collect six spent and eight corresponding new, off-the-shelf fluorescent lamp samples. The efficiency of several acid digestion methods for the determination of the elemental composition was studied and elemental mass fractions of K, Na, Y, Ca, Ba, Eu, Al, Pb, Mg, Hg, and P were measured. The study also finds aqua regia to be the best reagent for acid digestion. However, no significant difference in mercury distribution was found in the different phases of the new and spent fluorescent lamps. KW - Mercury KW - Rare earth elements KW - Hg distribution KW - Fluorescence lamps PY - 2017 U6 - https://doi.org/10.1016/j.chemosphere.2016.11.104 SN - 0045-6535 SN - 1879-1298 VL - 169 SP - 618 EP - 626 PB - Elsevier AN - OPUS4-38481 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -