TY - JOUR A1 - Zheng, Y. A1 - Zhang, S. A1 - Ma, J. A1 - Sun, F. A1 - Osenberg, M. A1 - Hilger, A. A1 - Markötter, Henning A1 - Wilde, F. A1 - Manke, I. A1 - Hu, Z. A1 - Cui, G. T1 - Codependent failure mechanisms between cathode and anode in solid state lithium metal batteries: mediated by uneven ion flux N2 - An in-depth understanding of the degradation mechanisms is a prerequisite for developing the nextgeneration all solid-state lithium metal battery (ASSLMB) technology. Herein, synchrotron X-ray computed tomography (SXCT) together with other probing tools and simulation method were employed to rediscover the decaying mechanisms of LiNi0.8Co0.1Mn0.1O2 (NCM)|Li6PS5Cl (LPSCl)|Li ASSLMB. It reveals that the detachment and isolation of NCM particles cause the current focusing on the remaining active regions of cathode. The extent of Li stripping and the likelihood of Li+ plating into LPSCl facing the active NCM particles becomes higher. Besides, the homogeneity of Li stripping/plating is improved by homogenizing the electrochemical reactions at the cathode side by LiZr2(PO4)3 (LZP) coating. These results suggest a codependent failure mechanism between cathode and anode that is mediated by uneven Li ion flux. This work contributes to establish a holistic understanding of the degradation mechanisms in ASSLMBs and opens new opportunities for their further optimization and evelopment. KW - Current density distribution KW - Lithium ion flux KW - Solid-state lithium metal batteries KW - Codependent failure mechanism KW - Cathode deactivation PY - 2023 DO - https://doi.org/10.1016/j.scib.2023.03.021 SN - 2095-9273 VL - 68 IS - 8 SP - 813 EP - 825 PB - Elsevier B.V. AN - OPUS4-57309 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zhang, X. A1 - Shi, L. A1 - Wu, C. A1 - Yang, Chunliang A1 - Gao, S. T1 - Multi-phase modelling of heat and mass transfer during Ti/Al dissimilar friction stir welding process N2 - Friction stir welding (FSW) has the capacity to join the Al/Ti dissimilar structures with superior mechanical properties. The microstructures and mechanical characteristics of Al/Ti dissimilar FSW joints are determined by the heat and mass transfer during the welding process. However, a quantitative study of the Al/Ti dissimilar FSW process is lacking. Therefore, using the computational fluid dynamics (CFD) and volume of fluid (VOF) approach, a multi-phase model was constructed for quantitatively analyzing the heat and mass transfer behaviour in dissimilar FSW of TC4 titanium alloy and AA2024-T4 aluminium alloy. The mixed material was treated as a functionally graded material (FGM) to compute the thermophysical characteristics at the weld nugget zone (WNZ). Due to the vast disparity in the thermophysical characteristics of aluminum and titanium alloy, the temperature field in Al/Ti dissimilar FSW was severely asymmetric. The temperature of titanium alloy on the advancing side (AS) was higher than that of aluminium alloy on the retreating side (RS) at the same distance from the tool centre line near the tool shoulder, but it was lower than that of aluminium alloy on the RS without the influence of the shoulder. Due to the high flow stress of titanium alloy, plastic material flow mostly occurred on the RS of aluminium alloy in the Al/Ti dissimilar FSW, with its percentage exceeding 80%. This model was validated by experiment results. KW - Dissimilar friction stir welding KW - Al/Ti dissimilar joints KW - Temperature distribution KW - Heat generation KW - Plastic material flow PY - 2023 DO - https://doi.org/10.1016/j.jmapro.2023.03.037 SN - 2212-4616 VL - 94 SP - 240 EP - 254 PB - Elsevier Ltd. AN - OPUS4-57265 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Reed, B. P. A1 - Cant, D.J.H. A1 - Spencer, S.J. A1 - Carmona-Carmona, A. J. A1 - Bushell, A. A1 - Herrara-Gómez, A. A1 - Kurokawa, A. A1 - Thissen, A. A1 - Thomas, A.G. A1 - Britton, A.J. A1 - Bernasik, A. A1 - Fuchs, A. A1 - Baddorf, A.P. A1 - Bock, B. A1 - Thellacker, B. A1 - Cheng, B. A1 - Castner, D.G. A1 - Morgan, D.J. A1 - Valley, D. A1 - Willneff, E.A. A1 - Smith, E.P. A1 - Nolot, E. A1 - Xie, F. A1 - Zorn, G. A1 - Smith, G.C. A1 - Yasukufu, H. A1 - Fenton, J.L. A1 - Chen, J. A1 - Counsell, J.D.P. A1 - Radnik, Jörg A1 - Gaskell, K.J. A1 - Artyushkova, K. A1 - Yang, L. A1 - Zhang, L. A1 - Eguchi, M. A1 - Walker, M. A1 - Hajdyla, M. A1 - Marzec, M.M. A1 - Linford, M.R. A1 - Kubota, N. A1 - Cortazar-Martinez, O. A1 - Dietrich, P. A1 - Satoh, R. A1 - Schroeder, S.L.M. A1 - Avval, T.G. A1 - Nagatomi, T. A1 - Fernandez, V. A1 - Lake, W. A1 - Azuma, Y. A1 - Yoshikawa, Y. A1 - Compean-Gonzalez, C.L. A1 - Ceccone, G. A1 - Shard, A.G. T1 - ERRATUM: “Versailles project on advanced materials and standards interlaboratory study on intensity calibration for x-ray photoelectron spectroscopy instruments using low-density polyethylene” [J. Vac. Sci. Technol. A 38, 063208 (2020)] N2 - The lead authors failed to name two collaborators as co-authors. The authors listed should include: Miss Claudia L. Compean-Gonzalez (ORCID: 0000-0002-2367-8450) and Dr. Giacomo Ceccone (ORCID: 0000-0003-4637-0771). These co-authors participated in VAMAS project A27, provided data that were analyzed and presented in this publication (and supporting information), and reviewed the manuscript before submission. KW - X-ray photoelectron spectroscopy KW - Transmission function KW - Low-density polyethylene PY - 2021 DO - https://doi.org/10.1116/6.0000907 VL - 39 IS - 2 SP - 027001 PB - American Vacuum Society AN - OPUS4-52380 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zerbst, Uwe A1 - Bruno, Giovanni A1 - Buffière, J.-Y. A1 - Wegener, T. A1 - Niendorf, T. A1 - Wu, T. A1 - Zhang, X. A1 - Kashaev, N. A1 - Meneghetti, G. A1 - Hrabe, Nik A1 - Madia, Mauro A1 - Werner, Tiago A1 - Hilgenberg, Kai A1 - Koukolikova, M. A1 - Prochazka, R. A1 - Dzugan, J. A1 - Möller, B. A1 - Beretta, S. A1 - Evans, Alexander A1 - Wagener, R. A1 - Schnabel, K. T1 - Damage tolerant design of additively manufactured metallic components subjected to cyclic loading: State of the art and challenges N2 - This article is an outcome of a workshop on Fatigue of Additive Manufactured Metallic Components jointly organized by the Federal Institute for Materials Research and Testing (BAM) Berlin, Germany and the National Institute of Standards and Technology (NIST) Boulder, CO, U.S.A. The aim of the workshop was a comprehensive discussion of the specific aspects of additively manufactured (AM) components in regard to failure under cyclic loading. Undoubtedly, a better understanding and the further development of approaches for damage tolerant component design of AM parts are among the most significant challenges currently facing the use of these new technologies. This article presents a thorough overview of the workshop discussions. It aims to provide a review of the parameters affecting the damage tolerance of AM parts with special emphasis on the process parameters intrinsic to the AM technologies, the resulting defects and residual stresses. Based on these aspects, concepts for damage tolerant component design for AM are reviewed and critically discussed. KW - Additive manufacturing KW - Fatigue loading KW - Component assessment KW - Damage tolerance KW - Defects KW - Residual stresses PY - 2021 DO - https://doi.org/10.1016/j.pmatsci.2021.100786 SN - 0079-6425 VL - 121 PB - Elsevier CY - Amsterdam AN - OPUS4-51937 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wu, Y. A1 - Lu, X. A1 - Cho, J.I.S. A1 - Rasha, L. A1 - Whiteley, M. A1 - Neville, T. P. A1 - Ziesche, R. A1 - Kardjilov, N. A1 - Markötter, Henning A1 - Manke, I. A1 - Zhang, X. A1 - Shearing, P. R. A1 - Brett, D. J. L. T1 - Multi-length scale characterization of compression on metal foam flow-field based fuel cells using X-ray computed tomography and neutron radiography N2 - The mechanical compression of metal foam flow-field based polymer electrolyte fuel cells (PEFCs) is critical in determining the interfacial contact resistance with gas diffusion layers (GDLs), reactant flow and water management. The distinct scale between the pore structure of metal foams and the entire flow-field warrant a multilength scale characterization that combines ex-situ tests of compressed metal foam samples and in-operando analysis of operating PEFCs using X-ray computed tomography (CT) and neutron radiography. An optimal ‘medium’ compression was found to deliver a peak power density of 853 mW/cm². The X-ray CT data indicates that the compression process significantly decreases the mean pore size and narrows the pore size distribution of metal foams. Simulation results suggest compressing metal foam increases the pressure drop and gas velocity, improving the convective liquid water removal. This is in agreement with the neutron imaging results that demonstrates an increase in the mass of accumulated liquid water with minimum compression compared to the medium and maximum compression cases. The results show that a balance between Ohmic resistance, water removal capacity and parasitic power is imperative for the optimal performance of metal foam based PEFCs. KW - Fuel cell KW - Compression effect KW - Metal foam microstructure KW - Neutron radiography KW - X-ray CT PY - 2021 DO - https://doi.org/10.1016/j.enconman.2020.113785 VL - 239 SP - 10 EP - 113785 PB - Elsevier Ltd. AN - OPUS4-53842 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Reed, B. P. A1 - Cant, D.J.H. A1 - Spencer, J. A1 - Carmona-Carmona, A. J. A1 - Bushell, A. A1 - Herrara-Gómez, A. A1 - Kurokawa, A. A1 - Thissen, A. A1 - Thomas, A.G. A1 - Britton, A.J. A1 - Bernasik, A. A1 - Fuchs, A. A1 - Baddorf, A. P. A1 - Bock, B. A1 - Thellacker, B. A1 - Cheng, B. A1 - Castner, D.G. A1 - Morgan, D.J. A1 - Valley, D. A1 - Willneff, E.A. A1 - Smith, E.F. A1 - Nolot, E. A1 - Xie, F. A1 - Zorn, G. A1 - Smith, G.C. A1 - Yasukufu, H. A1 - Fenton, J. L. A1 - Chen, J. A1 - Counsell, J..D.P. A1 - Radnik, Jörg A1 - Gaskell, K.J. A1 - Artyushkova, K. A1 - Yang, L. A1 - Zhang, L. A1 - Eguchi, M. A1 - Walker, M. A1 - Hajdyla, M. A1 - Marzec, M.M. A1 - Linford, M.R. A1 - Kubota, N. A1 - Cartazar-Martínez, O. A1 - Dietrich, P. A1 - Satoh, R. A1 - Schroeder, S.L.M. A1 - Avval, T.G. A1 - Nagatomi, T. A1 - Fernandez, V. A1 - Lake, W. A1 - Azuma, Y. A1 - Yoshikawa, Y. A1 - Shard, A.G. T1 - Versailles Project on Advanced Materials and Standards interlaboratory study on intensity calibration for x-ray photoelectron spectroscopy instruments using low-density polyethylene N2 - We report the results of a Versailles Project on Advanced Materials and Standards interlaboratory study on the intensity scale calibration of x-ray photoelectron spectrometers using low-density polyethylene (LDPE) as an alternative material to gold, silver, and copper. An improved set of LDPE reference spectra, corrected for different instrument geometries using a quartz-monochromated Al Kα x-ray source, was developed using data provided by participants in this study. Using these new reference spectra, a transmission function was calculated for each dataset that participants provided. When compared to a similar calibration procedure using the NPL reference spectra for gold, the LDPE intensity calibration method achieves an absolute offset of ∼3.0% and a systematic deviation of ±6.5% on average across all participants. For spectra recorded at high pass energies (≥90 eV), values of absolute offset and systematic deviation are ∼5.8% and ±5.7%, respectively, whereas for spectra collected at lower pass energies (<90 eV), values of absolute offset and systematic deviation are ∼4.9% and ±8.8%, respectively; low pass energy spectra perform worse than the global average, in terms of systematic deviations, due to diminished count rates and signal-to-noise ratio. Differences in absolute offset are attributed to the surface roughness of the LDPE induced by sample preparation. We further assess the usability of LDPE as a secondary reference material and comment on its performance in the presence of issues such as variable dark noise, x-ray warm up times, inaccuracy at low count rates, and underlying spectrometer problems. In response to participant feedback and the results of the study, we provide an updated LDPE intensity calibration protocol to address the issues highlighted in the interlaboratory study. We also comment on the lack of implementation of a consistent and traceable intensity calibration method across the community of x-ray photoelectron spectroscopy (XPS) users and, therefore, propose a route to achieving this with the assistance of instrument manufacturers, metrology laboratories, and experts leading to an international standard for XPS intensity scale calibration. KW - X-ray photoelectron spectroscopy KW - Transmission function KW - Intensity scale calibration KW - Reference spectra KW - Low-density polyethylene (LDPE) PY - 2020 DO - https://doi.org/10.1116/6.0000577 VL - 38 IS - 6 SP - 063208 AN - OPUS4-51655 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -