TY - JOUR A1 - Sun, F. A1 - Wang, C. A1 - Osenberg, M. A1 - Dong, K. A1 - Zhang, S. A1 - Yang, C. A1 - Wang, Y. A1 - Hilger, A. A1 - Zhang, J. A1 - Dong, S. A1 - Markötter, Henning A1 - Manke, I. A1 - Cui, G. T1 - Clarifying the Electro-Chemo-Mechanical Coupling in Li10SnP2S12 based All-Solid-State Batteries JF - Advanced Energy Materials N2 - A fundamental clarification of the electro-chemo-mechanical coupling at the solid–solid electrode|electrolyte interface in all-solid-state batteries (ASSBs) is of crucial significance but has proven challenging. Herein, (synchrotron) X-ray tomography, electrochemical impedance spectroscopy (EIS), time-of-flight secondary-ion mass spectrometry (TOF-SIMS), and finite element analysis (FEA) modeling are jointly used to decouple the electro-chemo-mechanical coupling in Li10SnP2S12-based ASSBs. Non-destructive (synchrotron) X-ray tomography results visually disclose unexpected mechanical deformation of the solid electrolyte and electrode as well as an unanticipated evolving behavior of the (electro)chemically generated interphase. The EIS and TOFSIMS probing results provide additional information that links the interphase/electrode properties to the overall battery performance. The modeling results complete the picture by providing the detailed distribution of the mechanical stress/strain and the potential/ionic flux within the electrolyte. Collectively, these results suggest that 1) the interfacial volume changes induced by the (electro)chemical reactions can trigger the mechanical deformation of the solid electrode and electrolyte; 2) the overall electrochemical process can accelerate the interfacial chemical reactions; 3) the reconfigured interfaces in turn influence the electric potential distribution as well as charge transportation within the SE. These fundamental discoveries that remain unreported until now significantly improve the understanding of the complicated electro-chemo-mechanical couplings in ASSBs. KW - All-solid-state batteries KW - Lithium metal batteries KW - Solid electrolytes KW - Sulfide solid electrolytes KW - Synchrotron X-ray tomography PY - 2022 DO - https://doi.org/10.1002/aenm.202103714 SN - 1614-6832 SP - 2103714 PB - Wiley VHC-Verlag AN - OPUS4-54431 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zhang, X. A1 - Zhang, J. A1 - Wang, H. A1 - Rogal, J: A1 - Li, H.-Y. A1 - Wei, S.-H. A1 - Hickel, Tilmann T1 - Defect-characterized phase transition kinetics JF - Applied physics reviews N2 - Phase transitions are a common phenomenon in condensed matter and act as a critical degree of freedom that can be employed to tailor the mechanical or electronic properties of materials. Understanding the fundamental mechanisms of the thermodynamics and kinetics of phase transitions is, thus, at the core of modern materials design. Conventionally, studies of phase transitions have, to a large extent, focused on pristine bulk phases. However, realistic materials exist in a complex form; their microstructures consist of different point and extended defects. The presence of defects impacts the thermodynamics and kinetics of phase transitions, but has been commonly ignored or treated separately. In recent years, with the significant advances in theoretical and experimental techniques, there has been an increasing research interest in modeling and characterizing how defects impact or even dictate phase transitions. The present review systematically discusses the recent progress in understanding the kinetics of defect-characterized phase transitions, derives the key mechanisms underlying these phase transitions, and envisions the remaining challenges and fruitful research directions. We hope that these discussions and insights will help to inspire future research and development in the field. KW - Kinetics KW - Atomistic models KW - Phase transitions KW - Defects PY - 2022 DO - https://doi.org/10.1063/5.0117234 SN - 1931-9401 VL - 9 IS - 4 SP - 1 EP - 42 PB - AIP CY - New York, NY AN - OPUS4-56507 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Beyer, S. A1 - Kimani, Martha Wamaitha A1 - Zhang, Y. A1 - Verhassel, A. A1 - Sternbæk, L. A1 - Wang, T. A1 - Persson, J. L. A1 - Härkönen, P. A1 - Johansson, E. A1 - Caraballo, R. A1 - Elofsson, M. A1 - Gawlitza, Kornelia A1 - Rurack, Knut A1 - Ohlsson, L. A1 - El-Schich, Z. A1 - Gjörloff Wingren, A. A1 - Stollenwerk, M. M. T1 - Fluorescent Molecularly Imprinted Polymer Layers against Sialic Acid on Silica-coated Polystyrene Cores - Assessment of the Binding Behavior to Cancer Cells JF - Cancers N2 - Sialic acid (SA) is a monosaccharide usually linked to the terminus of glycan chains on the cell surface. It plays a crucial role in many biological processes, and hypersialylation is a common feature in cancer. Lectins are widely used to analyze the cell surface expression of SA. However, these protein molecules are usually expensive and easily denatured, which calls for the development of alternative glycan-specific receptors and cell imaging technologies. In this study, SA-imprinted fluorescent core-shell molecularly imprinted polymer particles (SA-MIPs) were employed to recognize SA on the cell surface of cancer cell lines. The SA-MIPs improved suspensibility and scattering properties compared with previously used core-shell SA-MIPs. Although SA-imprinting was performed using SA without preference for the alpha-2,3- and alpha-2,6-SA forms, we screened the cancer cell lines analyzed using the lectins Maackia Amurensis Lectin I (MAL I, alpha-2,3-SA) and Sambucus Nigra Lectin (SNA, alpha-2,6-SA). Our results show that the selected cancer cell lines in this study presented a varied binding behavior with the SA-MIPs. The binding pattern of the lectins was also demonstrated. Moreover, two different pentavalent SA conjugates were used to inhibit the binding of the SA-MIPs to breast, skin, and lung cancer cell lines, demonstrating the specificity of the SA-MIPs in both flow cytometry and confocal fluorescence microscopy. We concluded that the synthesized SA-MIPs might be a powerful future tool in the diagnostic analysis of various cancer cells. KW - Cancer KW - Imprinting KW - Molecularly imprinted polymers KW - SA conjugates KW - Sialic acid PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-546625 DO - https://doi.org/110.3390/cancers14081875 SN - 2072-6694 VL - 14 IS - 8 PB - MDPI CY - Basel AN - OPUS4-54662 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vogel, F. A1 - Cheng, J. A1 - Liang, S. B. A1 - Ke, C. B. A1 - Cao, S. S. A1 - Zhang, X. P. A1 - Zizak, I. A1 - Manzoni, Anna Maria A1 - Yu, J. M. A1 - Wanderka, N. A1 - Li, W. T1 - Formation and evolution of hierarchical microstructures in a Ni-based superalloy investigated by in situ high-temperature synchrotron X-ray diffraction JF - Journal of alloys and compounds N2 - Hierarchical microstructures are created when additional γ particles form in γ’ precipitates and they are linked to improved strength and creep properties in high-temperature alloys. Here, we follow the formation and evolution of a hierarchical microstructure in Ni86.1Al8.5Ti5.4 by in situ synchrotron X-ray diffraction at 1023 K up to 48 h to derive the lattice parameters of the γ matrix, γ’ precipitates and γ particles and misfits between phases. Finite element method-based computer simulations of hierarchical microstructures allow obtaining each phase's lattice parameter, thereby aiding peak identification in the in situ X-ray diffraction data. The simulations further give insight into the heterogeneous strain distribution between γ’ precipitates and γ particles, which gives rise to an anisotropic diffusion potential that drives the directional growth of γ particles. We rationalize a schematic model for the growth of γ particles, based on the Gibbs-Thomson effect of capillary and strain-induced anisotropic diffusion potentials. Our results highlight the importance of elastic properties, elastic anisotropy, lattice parameters, and diffusion potentials in controlling the behavior and stability of hierarchical microstructures. KW - XRD KW - Superalloy KW - Finite element method KW - Transmission electron microscopy PY - 2022 DO - https://doi.org/10.1016/j.jallcom.2022.165845 SN - 0925-8388 VL - 919 SP - 1 EP - 17 PB - Elsevier CY - Lausanne AN - OPUS4-55394 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schneider, Rudolf A1 - He, Y. A1 - Zhu, R. A1 - Cai, Y. A1 - Zhang, Y. A1 - Zhang, Y. A1 - Pan, S. A1 - Zhang, Y. T1 - Transcriptomics and protein biomarkers reveal the detoxifying mechanisms of UV radiation for nebivolol toward zebrafish (Danio rerio) embryos/larvae JF - Aquatic toxicology N2 - Nebivolol (NEB), a β-blocker frequently used to treat cardiovascular diseases, has been widely detected in aquatic environments, and can be degraded under exposure to UV radiation, leading to the formation of certain transformation products (UV-TPs). Thus, the toxic effects of NEB and its UV-TPs on aquatic organisms are of great importance for aquatic ecosystems. In the present study, the degradation pathway of NEB under UV radiation was investigated. Subsequently, zebrafish embryos/larvae were used to assess the median lethal concentration (LC50) of NEB, and to clarify the sub-lethal effects of NEB and its UV-TPs for the first time. It was found that UV radiation could reduce the toxic effects of NEB on the early development of zebrafish. Transcriptomic analysis identified the top 20 enriched Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways in zebrafish larvae exposed to NEB, most of which were associated with the antioxidant, nervous, and immune systems. The number of differentially expressed genes (DEGs) in the pathways were reduced after UV radiation. Furthermore, the analysis of protein biomarkers, including CAT and GST (antioxidant response), AChE and ACh (neurotoxicity), CRP and LYS (immune response), revealed that NEB exposure reduced the activity of these biomarkers, whereas UV radiation could alleviate the effects. The present study provides initial insights into the mechanisms underlying toxic effects of NEB and the detoxification effects of UV radiation on the early development of zebrafish. It highlights the necessity of considering the toxicity of UV-TPs when evaluating the toxicity of emerging pollutants in aquatic systems. KW - Biomarker KW - Pharmazeutika KW - Toxikologie KW - UV Bestrahlung KW - Zebrafisch KW - Transformationsprodukte PY - 2022 DO - https://doi.org/10.1016/j.aquatox.2022.106241 SN - 0166-445X VL - 249 SP - 1 EP - 10 PB - Elsevier CY - Amsterdam AN - OPUS4-55559 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -