TY - JOUR A1 - Eggeler, G. A1 - Wieczorek, N. A1 - Fox, F. A1 - Berglund, S. A1 - Bürger, D. A1 - Dlouhý, A. A1 - Wollgramm, P. A1 - Neuking, K. A1 - Schreuer, J. A1 - Agudo Jácome, Leonardo A1 - Gao, S. A1 - Hartmaier, A. A1 - Laplanche, G. T1 - On shear testing of single crystal Ni-base superalloys N2 - Shear testing can contribute to a better understanding of the plastic deformation of Ni-base superalloy single crystals. In the present study, shear testing is discussed with special emphasis placed on its strengths and weaknesses. Key mechanical and microstructural results which were obtained for the high-temperature (T ≈ 1000 °C) and low-stress (τ ≈ 200 MPa) creep regime are briefly reviewed. New 3D stereo STEM images of dislocation substructures which form during shear creep deformation in this regime are presented. It is then shown which new aspects need to be considered when performing double shear creep testing at lower temperatures (T < 800 °C) and higher stresses (τ > 600 MPa). In this creep regime, the macroscopic crystallographic [11−2](111) shear system deforms significantly faster than the [01−1](111) system. This represents direct mechanical evidence for a new planar fault nucleation scenario, which was recently suggested (Wu et al. in Acta Mater 144:642–655, 2018). The double shear creep specimen geometry inspired a micro-mechanical in-situ shear test specimen. Moreover, the in-situ SEM shear specimen can be FIB micro-machined from prior dendritic and interdendritic regions. Dendritic regions, which have a lower γ′ volume fraction, show a lower critical resolved shear stress. T2 - EuroSuperalloys 2018 CY - Oxford, UK DA - 09.09.2018 KW - Superalloy single crystals KW - Shear testing KW - Creep mechanisms KW - In-situ SEM micro shear deformation KW - Transmission electron microscopy PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-456591 DO - https://doi.org/10.1007/s11661-018-4726-9 SN - 1073-5623 SN - 1543-1940 VL - 49A IS - 9 SP - 3951 EP - 3962 PB - Springer US CY - New York AN - OPUS4-45659 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wieczorek, S. A1 - Schwaar, Timm A1 - Senge, M. O. A1 - Börner, H.G. T1 - Specific drug formulation additives: Revealing the impact of architecture and block length ratio N2 - Combining poly(ethylene glycol) (PEG) with sequence-defined peptides in PEG–peptide conjugates offers opportunities to realize next-generation drug formulation additives for overcoming undesired pharmacological profiles of difficult small molecule drugs. The tailored peptide segments provide sequence-specific, noncovalent drug binding, and the hydrophilic PEG block renders the complexes water soluble. On the basis of a peptide sequence known to bind the photosensitizer m-tetra(hydroxyphenyl)chlorin (m-THPC) for photodynamic cancer therapy, a set of different conjugate architectures is synthesized and studied. Variations in PEG block length and amplification of the peptidic binding domain of PEG–peptide conjugates are used to fine tune critical parameters for hosting m-THPC, such as drug payload capacities, aggregation sizes, and drug release and activation kinetics. PY - 2015 DO - https://doi.org/10.1021/acs.biomac.5b00961 SN - 1525-7797 VL - 16 IS - 10 SP - 3308 EP - 3312 PB - ACS Publ. CY - Washington, DC, USA AN - OPUS4-35037 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -