TY - JOUR A1 - Brandes, K. A1 - Neitzel, F. A1 - Weisbrich, S. A1 - Daum, Werner T1 - Lagrange-Multiplikatoren (LM) der Ausgleichsrechnung als Indikator für Strukturschäden N2 - Die ständige Überwachung von Bauwerken gewinnt zunehmend an Bedeutung. Mit Blick auf die Nachhaltigkeit ist die Verlängerung der Nutzungsdauer bestehender baulicher Konstruktionen von unschätzbarem Wert, sowohl aus finanziellen Gründen als auch unter Denkmalaspekten. Eine neue Methode zur Detektion von Strukturschädigungen basiert auf einer integrierten Auswertung von Messwerten verschiedener Sensoren nach der Methode der kleinsten Quadrate sowie der Interpretation der dabei auftretenden Langrange-Multiplikatoren. Diese Methode der Schädigungsanalyse wird anhand eines numerischen Beispiels aus einem Vier-Punkt-Biegeversuch mit einem Verbundträger näher erläutert. --------------------------------------------------------------------------------------------------------- Structural health monitoring of structures is gaining increasingly importance. With regard to sustainability it is of great value for both financial reasons (to extend the useful life of existing architectural structures) and the aspects of listed buildings. A new method for the detection of structural damage is based on an integrated analysis of measurements of different sensors according to the method of least squares and the interpretation of the occurring Lagrange Multipliers. This method of damage analysis is illustrated by a numerical example of a four-point bending test with a composite beam. KW - Bauwerk KW - Schädigung KW - Zustandsüberwachung KW - Schadensfrüherkennung KW - Ausgleichsrechnung KW - Lagrange-Multiplikator KW - Construction KW - Damage KW - Structural health monitoring KW - Damage detection KW - Curve fitting KW - Lagrange multiplier PY - 2012 U6 - https://doi.org/10.1524/teme.2012.0239 SN - 0340-837X SN - 0178-2312 SN - 0171-8096 VL - 79 IS - 7-8 SP - 348 EP - 358 PB - Oldenbourg CY - München AN - OPUS4-26385 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weisbrich, S. A1 - Wu, Cheng-Chieh A1 - Neitzel, F. T1 - Integration of finite element method within least-squares adjustment for damage detection T2 - 2nd Joint International Symposium on Deformation Monitoring (JISDM) CY - Nottingham, England DA - 2013-09-09 PY - 2013 AN - OPUS4-29061 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Brandes, K. A1 - Neitzel, F. A1 - Daum, Werner A1 - Weisbrich, S. T1 - Detektierung von Strukturschädigungen durch Analyse der Lagrange-Multiplikatoren (LM) der Ausgleichungsrechnung N2 - Die ständige Überwachung von Konstruktionen während ihrer Lebenszeit ist eine bedeutsame Aufgabe, die Gegenstand vielzähliger Forschungsaktivitäten ist. Unter dem Aspekt der Nachhaltigkeit ist die Verlängerung der Nutzungsdauer bestehender Konstruktionen von unschätzbarem Wert, sowohl aus finanziellen Gründen als auch unter dem Gesichtspunkt der Erhaltung der gebauten Umwelt und des Denkmalschutzes.Bei allen Erfolgen der Projekte zur Bauwerkserhaltung ist die Frage, wie entstehende Schädigungen rechtzeitig erkannt werden können, auch wenn sie erst geringfügig sind, nicht befriedigend beantwortet worden. In diesem Beitrag wird eine neue Methode zur Detektierung von Strukturschädigungenvorgestellt. Diese beruht auf einer integrierten Auswertung von Messwerten verschiedener Sensoren nach der Methode der kleinsten Quadrate sowie der Interpretation der dabei auftretenden Langrange-Multiplikatoren.Diese Methode der Schädigungsanalyse wird anhand eines numerischen Beispiels aus einemVier-Punkt-Biegeversuchmit einem Verbundträgernäher erläutert. T2 - Sensoren und Messsysteme 2012 - 16. GMA / ITG-Fachtagung CY - Nürnberg, Germany DA - 2012-05-22 KW - Zustandsüberwachung KW - Structural health monitoring KW - Schadensdetektion KW - Ausgleichsrechnung KW - Sensorik PY - 2012 SN - 978-3-9813484-0-8 U6 - https://doi.org/10.5162/sensoren2012/5.2.4 SP - 555 EP - 566 AN - OPUS4-26410 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Neitzel, F. A1 - Weisbrich, S. A1 - Wu, Cheng-Chieh ED - Wieser, A. T1 - Integration der Finite-Elemente-Methode in die Ausgleichsrechnung zur Parameteridentifikation N2 - Die Strukturüberwachung von Ingenieurbauwerken beruht heutzutage auf einer Auswertung räumlich und zeitlich verteilter hybrider Messungen, die z. B. mittels Tachymeter, Neigungssensoren, faseroptischen Sensoren (FOS), Dehnmessstreifen (DMS), GPS etc. erfasst werden. Für eine gemeinsame Auswertung müssen neue Methoden adaptiert werden, da diese, wie Lienhart (2012) aufzeigt, nur unter Verwendung eines mechanischen ‘Bauwerkmodells erfolgen kann. In vielen Ingenieurwissenschaften, wie z. B. dem Bauingenieurwesen, findet die Modellierung physikalisch-mechanischer Eigenschaften von Strukturen mithilfe der Finite-Elemente-Methode (FEM) statt. Die Verifizierung eines derartigen Modells erfolgt vorwiegend lediglich durch stellenweise Messung von z. B. Durchbiegungen und einer anschließenden Gegenüberstellung mit den berechneten Modellwerten. Dies ist meist der Tatsache geschuldet, dass für die FE-Modellierung in der Regel kommerzielle Programme verwendet werden, und somit auf viele Teilprozesse des Auswertealgorithmus nicht zugegriffen werden kann. Aus diesem Grund erfolgt in vielen akademischen Fragestellungen die FE-’Modellierung mit Open-Source-Software, wie z. B. FEniCS (2013) oder OpenSees (2013), wodurch auch eine kombinierte Auswertung von Messungen und Modell nach der Methode 'der kleinsten Quadrate ermöglicht wird. In diesem Beitrag wird eine messungs- und modellbasierte Strukturanalyse (MeMoS) durch (die Integration der Finite-Elemente-Methode in die Ausgleichungsrechnung am Beispiel eines Vier-Punkt-Biegeversuchs vorgestellt. In numerischen Untersuchungen wird gezeigt, wie diese integrierte Analyse für eine Parameteridentifikation angewendet werden kann. Für diese Untersuchungen wird ein Finite-Elemente-Modell mit bekannten Randbedingungen und Materialeigenschaften aufgestellt. Die Durchbiegungen, die als Beobachtungen in die Ausgleichung eingehen, werden mithilfe von Simulationsrechnungen erzeugt; der zu fidentifizierende Parameter ist der Elastizitätsmodul eines Balkens. Es wird untersucht, mit welcher Genauigkeit Durchbiegungsmessungen durchgeführt werden müssen und an welcher Stelle des Bauwerks diese Messungen erfolgen sollen, um den Elastizitätsmodul möglichst genau zu bestimmen. Des Weiteren wird der Einfluss der Anzahl der Messstellen auf den zu identifizierenden Parameter untersucht. T2 - 17. Internationaler Ingenieurvermessungskurs CY - Zurich, Switzerland DA - 14.01.2014 KW - Deformationsmessung KW - Finite-Elemente-Methode KW - Ausgleichsrechnung KW - Integrierte Analyse KW - Strukturanalyse KW - Parameteridentifikation PY - 2014 SN - 978-3-87907-535-5 VL - 14 SP - 301 EP - 310 PB - Wichmann AN - OPUS4-30174 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wu, Cheng-Chieh A1 - Völker, Daniel A1 - Weisbrich, S. A1 - Neitzel, F. ED - Holl, H. T1 - The finite volume method in the context of the finite element method N2 - The finite volume method (FVM), like the finite element method (FEM), is a numerical method for determining an approximate solution for partial differential equations. The derivation of the two methods is based on very different considerations, as they have historically evolved from two distinct engineering disciplines, namely solid mechanics and fluid mechanics. This makes FVM difficult to learn for someone familiar with FEM. In this paper we want to show that a slight modification of the FEM procedure leads to an alternative derivation of the FVM. Both numerical methods are starting from the same strong formulation of the problem represented by differential equations, which are only satisfied by their exact solution. For an approximation of the exact solution, the strong formulation must be converted to a so-called weak form. From here on, the two numerical methods differ. By appropriate choice of the trial function and the test function, we can obtain different numerical methods for solving the weak formulation of the problem. While typically in FEM the basis functions of the trial function and test function are identical, in FVM they are chosen differently. In this paper, we show which trial and test function must be chosen to derive the FVM alternatively: The trial function of the FVM is a “shifted” trial function of the FEM, where the nodal points are now located in the middle of an integration interval rather than at the ends. Moreover, the basis functions of the test function are no longer the same as those of the trial function as in the FEM, but are shown to be a constant equal to 1. This is demonstrated by the example of a 1D Poisson equation. KW - Finite Volume Method KW - Finite Element Method KW - Variational Calculation KW - Numerical Methods PY - 2022 U6 - https://doi.org/10.1016/j.matpr.2022.05.460 SN - 2214-7853 VL - 62 SP - 2679 EP - 2683 PB - Elsevier Ltd. CY - Amsterdam AN - OPUS4-55046 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wu, Cheng-Chieh A1 - Völker, Daniel A1 - Weisbrich, S. A1 - Neitzel, F. ED - Holl, H. T1 - The Finite Volume Method in point of view of Finite Element Method N2 - The best-known discretization methods for solving engineering problems formulated as partial differential equations are finite difference method (FDM), finite element method (FEM) and finite volume method (FVM). While the finite volume method is used in fluid mechanics, the finite element method is predominant in solid state mechanics. At first glance, FVM and FEM are two highly specialized methods. However, both methods can solve problems of both solid mechanics and fluid mechanics well. Since experimental mechanics deals not only with solid state physics but also with fluid mechanics problems, we want to understand FVM in the sense of FEM in this work. In the long term, we want to use the variational calculus to unify many important numerical methods in engineering science into a common framework. In this way, we expect that experiences can be better exchanged between different engineering sciences and thus innovations in the field of experimental mechanics can be advanced. But in this work, we limit ourselves to the understanding of the FVM with the help of the variational calculus already known in FEM. We use a simple 1D Poisson equation to clarify the point. First, we briefly summarize the FVM and FEM. Then we will deal with the actual topic of this paper, as we establish the FEM and the FVM on a common basis by variation formulation. It is shown here that the FVM can be understood in terms of the finite element method with the so-called Galerkin-Petrov approach. T2 - 37th Danubia Adria Symposium on Advances in Experimental Mechanics CY - Linz, Österreich DA - 21.09.2021 KW - Finite element method KW - Finite volume method KW - Variational calculation KW - Simulation KW - Computational physics PY - 2021 SN - 978-3-9504997-0-4 SP - 12 EP - 13 AN - OPUS4-53422 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wu, Cheng-Chieh A1 - Weisbrich, S. A1 - Neitzel, F. ED - Aulova, Alexandra ED - Rogelj Ritonja, Alenka ED - Emri, Igor T1 - Approximate model for geometrical complex structures N2 - Many engineering structures are made of composite materials or metal foam. To simulate the deformational behaviour of these structures often requires a high number of discretisation elements. This in turn yields a very large system of linear equations that are extremely time and memory consuming or practically impossible to solve. It is therefore desirable to find an approach to overcome this obstacle. T2 - 33rd Danubia- Adria Symposium on Advances in Experimental Mechanics CY - Portorož, Slovenia DA - 20.09.2016 KW - Inverse analysis KW - Finite element method KW - Least-squares adjustment PY - 2016 SN - 978-961-94081-0-0 SP - 52 EP - 53 CY - Ljubljana AN - OPUS4-37529 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weisbrich, S. A1 - Wu, Cheng-Chieh A1 - Neitzel, F. ED - Harte, R. T1 - On optimal measurement set-ups for parameter identification from an integrated structural analysis of hybrid measurements and finite element model N2 - One major ambition in Structural Health Monitoring (SHM) is to develop the ability to detect, identify and localize damage as well as to predict the lifespan of civil structures (Worden et al. 2007). This would allow well-informed decision on whether to repair or to demolish these structures. The word monitoring in SHM brings up several frequently ignored questions: What type of sensors and accuracies are needed to monitor a given structure? Where are the optimal sensor placements? How many sensors are necessary? How to analyse spatially distributed hybrid measurements? Or, in short: What is the sensor configuration best suited for structural health monitoring? If these questions are not explicitly addressed, the usefulness of the measurement data for an evaluation is left to coincidence. T2 - XIVth Bilateral Czech/German Symposium 'Experimental methods and numerical simulation in engineering science' CY - Wuppertal, Germany DA - 04.06.2014 PY - 2014 SP - 46 EP - 47 AN - OPUS4-30913 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Becker, T. A1 - Weisbrich, S. A1 - Euteneuer, F. A1 - Wu, Cheng-Chieh A1 - Neitzel, F. T1 - Neue Möglichkeiten in der Bauwerksüberwachung durch integrierte Analyse von Sensormessungen und 3D-Bauwerksmodell N2 - Die Verwendung offener Standards bietet eine Vielzahl von Möglichkeiten, gerade im Bereich des Datenaustausches, Datenlagerung, aber auch der Interoperabilität. GML und CityGML sind hervorragende Beispiele für die Beschreibung von Realweltobjekten mittels eines offenen Standards wohingegen SensorML dazu dient, Messungen, Sensoren und Messplattformen zu beschreiben. Die Verwendung solcher Standards eröffnet dem Nutzer nicht nur die Möglichkeiten der Verwendung einer gemeinsamen standardisierten Sprache, sondern auch die Nutzung von offenen Servicestandards, wie Web Feature Service (WFS), Web Map Service (WMS) oder von Sensor Observation Services (SOS). Die Kombination von Geodaten- und Sensorstandards in einer Dienste- und Servicearchitektur geht über bisherige am Markt existierende Lösungen hinaus und schafft eine neuartige Plattform für die Bauwerksüberwachung, die weit mehr als ein simples Datenhaltungsmodell darstellt. Die in diesem Beitrag vorgestellte Plattform ermöglicht eine direkte Integration von Sensordaten sowie deren Bereitstellung durch eine offene Standardsprache. Dabei sind alle Zwischenschritte jederzeit über eine offene Diensteschnittstelle adressierbar und können so verschiedenen Akteuren zur Verfügung gestellt werden. Das große Potential und der Mehrwert eines derartigen Informationssystems liegt vor allem in der permanenten Verfüg-barkeit von Mess- und Objektdaten und einer damit verbundenen integrierten Analyse der Sensormessdaten in Kombination mit einem Finite-Elemente-Modell (FEM), basierend auf den Objektdaten. Die automatische Ableitung eines FE-Modells aus dem 3D-Bauwerks-modell, die Visualisierung der FEM-Simulationsergebnisse anhand des Bauwerksmodells, die Bereitstellung von Messrohdaten und Sensorinformationen zu jedem Messzeitpunkt machen die Plattform zu einem universell einsetzbaren Werkzeug im Bereich der Bauwerksüberwachung. In diesem Beitrag werden die einzelnen Bausteine, die verwendeten Standards und die Interaktion der einzelnen Komponenten zu einem Gesamtsystem vorgestellt. T2 - 34. Wissenschaftlich-technische Jahrestagung der DGPF CY - Hamburg, Germany DA - 26.03.2014 KW - 3D-Geoinformation KW - CityGML KW - Finite-Elemente-Methode PY - 2014 VL - 23 SP - Paper 254, 1 EP - 10 AN - OPUS4-30619 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wu, Cheng-Chieh A1 - Weisbrich, S. A1 - Neitzel, F. T1 - Integrated structural analysis of hybrid measurement and finite element method for damage detection within a slender beam N2 - One major ambition in Structural Health Monitoring (SHM) is to develop the ability to detect, identify and localize damage as well as to predict the lifespan of civil structures. This would allow well-informed decision on whether to repair or to demolish these structures. We want to focus on the issues of detection and localisation of damage caused by material degradation within a slender beam - a structure that is often used as a construction carrier. T2 - 31st Danubia-Adria Symposium on advances in experimental mechanics CY - Kempten, Germany DA - 24.09.2014 PY - 2014 SN - 978-3-00-046740-0 SP - 191 EP - 192 AN - OPUS4-31728 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wu, Cheng-Chieh A1 - Weisbrich, S. A1 - Neitzel, F. T1 - Inverse finite element adjustment of material parameters from integrated analysis of displacement field measurement T2 - 32nd Danubia-Adria Symposium on advances in experimental mechanics CY - Starý Smokovec, Slovakia DA - 2015-09-22 PY - 2015 SN - 978-80-554-1094-4 SP - 78 EP - 79 CY - Zilina AN - OPUS4-34485 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wu, Cheng-Chieh A1 - Weisbrich, S. A1 - Neitzel, F. T1 - Inverse finite element adjustment of material parameters from integrated analysis of displacement field measurement N2 - The integration of finite element method (FEM) into the least-squares adjustment presented in [1] is further extended for a joint evaluation of an elastostatic model and displacement field measurement. For linear solids which obey the HOOKE's law, the material parameters determination from measurements is being examined. In many literature, see for example [2], parameters are iteratively tuned until the computed FEM results are in accordance with the measurements. In contrast to these debatable approaches, we follow a rigorous and direct method. The “classical” FEM procedure starts with known material constants and ends up with computed fields such as dis-placement or temperature field. We present a method to invert the FEM procedure using the most general least-squares adjustment – the GAUSS-HELMERT Model (GHM). From given fields, the material parameters are directly calculated. T2 - 32nd Danubia-Adria Symposium on Advances in Experimental Mechanics CY - Stary Smokovec, Slovakia DA - 22.09.2015 PY - 2015 AN - OPUS4-34369 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Becker, T. A1 - Weisbrich, S. A1 - Wu, Cheng-Chieh A1 - Neitzel, F. ED - Breunig, M. ED - Al-Doori, M. ED - Butwilowski, E. ED - Kuper, P.V. ED - Benner, J. ED - Haefele, K.H. T1 - Advances in structural monitoring by an integrated analysis of sensor measurements and 3D building model N2 - The use of open GIS standards offers a broad variety of potential, particularly in the field of data exchange, data storage, and interoperability. GML and CityGML are excellent examples for the ontological description of real world objects by means of an open standard whereas SensorML serves to describe measurements, sensors and measuring platforms. The use of such standards offers not only the possibility of using a common standardised language, but also the use of open service standards. The combination of spatial data and sensor standards in services and service-oriented architectures goes far beyond previous existing solutions on the market and provides a novel platform for monitoring structures. That in fact is far more than a simple data storage model. The methods and models presented in this contribution allow a direct integration of sensor data and its provision through an open standard language. In this case, all the intermediate steps at any time through an open service interface are addressed and may be made available and provided to different actors and stakeholders participating in a construction scenario. The great potential and the added value of such an information system is the permanent availability of measurement and object data and an associated integrated analysis of sensor data in combination with a finite element model (FEM). The automatic derivation of a finite element model from the 3D structure model, the visualisation of FEM, the provision of raw (measurement) data and sensor information for each time of measurement transform the platform into a universal tool in the field of structural monitoring. This contribution introduces the individual components, the standards used and the interaction between the components to an overall system. KW - Structural monitoring KW - SensorML KW - Finite element method KW - Integrated analysis KW - City model KW - Building model PY - 2015 SN - 978-3-319-12180-2 SN - 978-3-319-12181-9 U6 - https://doi.org/10.1007/978-3-319-12181-9_9 SN - 1863-2246 SN - 1863-2351 N1 - Serientitel: Lecture notes in geoinformation and cartography (LNG&C) – Series title: Lecture notes in geoinformation and cartography (LNG&C) SP - 141 EP - 156 PB - Springer AN - OPUS4-32736 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wu, Cheng-Chieh A1 - Weisbrich, S. A1 - Neitzel, F. A1 - Kadoke, Daniel A1 - Fischer, Michael A1 - Kohlhoff, Harald ED - Pastramă, Ştefan Dan ED - Constantinescu, Dan Mihai T1 - A Small-Scale Test Bridge for Measurement and Model-based Structural Analysis N2 - The Measurement- and Model-based Structural Analysis (MeMoS) integrates a finite element model into least squares adjustment and thus allows to evaluate a mechanical model and measurements in a combined analysis. To examine the capability to detect and localise damage using this integrated analysis MeMoS, a small-scale truss bridge made of aluminium profiles is built as a test specimen for this purpose. T2 - 35th Danubia Adria Symposium on Advances in Experimental Mechanics CY - Sinaia, Romania DA - 25.09.2018 KW - Structural analysis KW - Damage detection and localisation KW - Finite element method KW - Photogrammetry KW - Adjustment calculation PY - 2019 UR - http://www.sciencedirect.com/science/article/pii/S2214785319304894 U6 - https://doi.org/10.1016/j.matpr.2019.03.130 SN - 2214-7853 VL - 12 IS - 2 SP - 319 EP - 328 PB - Elsevier Ltd. AN - OPUS4-48053 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wu, Cheng-Chieh A1 - Weisbrich, S. A1 - Neitzel, F. ED - Nicoletto, G. ED - Pastrama, S. D. ED - Emri, I. T1 - Inverse finite element adjustment of material parameters from integrated analysis of displacement field measurement N2 - The determination of material parameters from displacement field measurement is being examined for linear elastic solid. A frequently used approach to compute material constants can be found in many studies. Even though they presented the approach in many different variations, but in the end they are essentially based on the same algorithm: Parameters are iteratively tuned until the computed results are in accordance with the measurements. The main drawback of this approach is that mainly commercial software is used that hinders us to investigate its inner evaluation process. This leads to the question, how the results from this commercial software can be trusted. On the contrary to these debatable approaches, we present a method that inverts the procedure of finite element method by using the most general model for a least-squares adjustment – the GAUSS-HELMERT Model. T2 - 32nd DANUBIA ADRIA SYMPOSIUM on Advances in Experimental Mechanics CY - Starý Smokovec, Slovakia DA - 22.09.2015 KW - Integrated analysis KW - Inverse problem KW - Finite element method KW - Least-squares adjustment KW - Model and measurement based analysis PY - 2016 UR - http://www.sciencedirect.com/science/article/pii/S2214785316002091 U6 - https://doi.org/10.1016/j.matpr.2016.03.004 SN - 2214-7853 VL - 3 IS - 4 SP - 1211 EP - 1215 PB - Elsevier Ltd. AN - OPUS4-35629 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wu, Cheng-Chieh A1 - Weisbrich, S. A1 - Burger, M. A1 - Neitzel, F. T1 - A Four-Point Bending Test Apparatus for Measurement- and Model-based Structural Analysis N2 - By means of a small-scale truss bridge, the ability of the Measurement- and Model-based Structural Analysis to detect and localize damage was examined. Although there was no noteworthy difficulty in detecting damage, it turned out that damage localization responds sensitively to systematic influences, i.e. non-modelled properties of the mechanical model. Therefore, another experiment is being conducted to re-examine the Measurement- and Model-based Structural Analysis. For this purpose, the bending test is carried out as it has been already theoretically respectively numerically discussed. In this attempt, the systematic influences such as residual stress are kept as low as possible. T2 - 36th Danubia Adria Symposium on Advances in Experimental Mechanics CY - Pilsen, Czech Republic DA - 24.09.2019 KW - Damage detection KW - Adjustment calculation KW - Finite element method PY - 2019 SN - 978-80-261-0876-4 SP - 63 EP - 64 CY - Pilsen, Czech Republic AN - OPUS4-49290 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wu, Cheng-Chieh A1 - Weisbrich, S. A1 - Burger, M. A1 - Neitzel, F. ED - Zemčík, R. T1 - A four-point bending test apparatus for measurement- and model-based structural analysis N2 - By means of a small-scale truss bridge, the ability of the Measurement- and Model-based Structural Analysis to detect and localise damage was examined in. Although there was no noteworthy difficulty in detecting damage, it turned out that damage localisation responds sensitively to systematic influences, i.e. non-modelled properties of the mechanical model. Therefore, another experiment is being conducted to re-examine the Measurement- and Model-based Structural Analysis. For this purpose, the bending test is carried out as it has been already theoretically respectively numerically discussed in. In this attempt, the systematic influences such as residual stress are kept as low as possible. T2 - 36th Danubia Adria Symposium on Advances in Experimental Mechanics CY - Pilsen, Czech Republic DA - 24.09.2019 KW - Damage detection KW - Adjustment calculation KW - Finite element method KW - Integrated analysis PY - 2020 UR - http://www.sciencedirect.com/science/article/pii/S2214785320326432 U6 - https://doi.org/10.1016/j.matpr.2020.04.028 SN - 2214-7853 VL - 32 IS - 2 SP - 156 EP - 161 PB - Elsevier Ltd. AN - OPUS4-51551 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wu, Cheng-Chieh A1 - Weisbrich, S. A1 - Neitzel, F. ED - Emri, Igor T1 - Approximate model for geometrical complex structures N2 - Many engineering structures are nowadays made of composite materials or metal foam. These modern engineering materials contain very complex inner geometry. To simulate the deformational behaviour of these structures often requires a high number of discretisation elements. This in turn yields a very large system of linear equations that are extremely time and memory consuming or practically impossible to solve. It is therefore desirable to find an approach to overcome this obstacle. In this paper a numerical method is proposed to find an approximate substitute model for geometrical complex structures. T2 - 33rd Danubia Adria Symposium on Advances in Experimental Mechanics CY - Portorož, Slovenia DA - 20.09.2016 KW - Adjustment calculation KW - Finite element method KW - Substitute model KW - Complex structures PY - 2017 UR - http://www.sciencedirect.com/science/article/pii/S2214785317308593 U6 - https://doi.org/10.1016/j.matpr.2017.06.084 SN - 2214-7853 VL - 4 IS - 5, Part 1 SP - 5995 EP - 6000 PB - Elsevier CY - Amsterdam, Netherlands AN - OPUS4-42794 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wu, Cheng-Chieh A1 - Kadoke, Daniel A1 - Fischer, Michael A1 - Kohlhoff, Harald A1 - Weisbrich, S. A1 - Neitzel, F. ED - Pastramă, Ştefan Dan ED - Constantinescu, Dan Mihai T1 - A small-scale test bridge for measurement- and model-based structural analysis N2 - To examine the capability to detect and localise damage using the Measurement- and Model-based Structural Analysis (MeMoS), a small-scale truss bridge (1520 mm × 720 mm × 720 mm) made of aluminium profiles is built as a test specimen for this purpose. The truss frame of the test bridge is made of aluminium profiles with a sophisticated design of the cross-sectional area. In comparison, with solid profiles, only a fraction of the material is needed to produce the profiles, while their bending resistance decreases slightly. The profiles are built into a truss frame by connecting them by means of fastening sets made of steel. The bridge model is mounted on four steel bearings which each of them consist of a cylinder arranged between two plates. Fixed bearings are made by holding onto one end of the bridge. The bridge is subjected by an external load by placing a heavy object beneath it. At the same time, measurements can be conducted below the bridge. Therefore, the bridge specimen is elevated by attaching it on a pedestal with four columns. Damages can be induced by loosening the fastening pieces. T2 - 35th Danubia-Adria Symposium on Advances in Experimental Mechanics CY - Sinaia, Romania DA - 25.09.2018 KW - Adjustment calculation KW - Finite element method KW - Damage detection and localisation KW - Structural analysis KW - Photogrammetry PY - 2018 SN - 978-606-23-0874-2 SP - 23 EP - 24 PB - PRINTECH CY - Bukarest AN - OPUS4-46116 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -