TY - JOUR A1 - Motzkus, C. A1 - Macé, T. A1 - Gaie-Levrel, F. A1 - Ducourtieux, S. A1 - Delvallee, A. A1 - Dirscherl, K. A1 - Hodoroaba, Vasile-Dan A1 - Popov, I. A1 - Kuselman, I. A1 - Popov, O. A1 - Takahata, K. A1 - Ehara, K. A1 - Ausset, P. A1 - Maillé, M. A1 - Michielsen, N. A1 - Bondiguel, S. A1 - Gensdarmes, F. A1 - Morawska, L. A1 - Johnson, G.R. A1 - Faghihi, E.M. A1 - Kim, C.S. A1 - Kim, Y.H. A1 - Chu, M.C. A1 - Guardado, J.A. A1 - Salas, A. A1 - Capannelli, G. A1 - Costa, C. A1 - Bostrom, T. A1 - Jämting, A.K. A1 - Lawn, M.A. A1 - Adlem, L. A1 - Vaslin-Reimann, S. T1 - Size characterization of airborne SiO2 nanoparticles with on-line and off-line measurement techniques: an interlaboratory comparison study N2 - Results of an interlaboratory comparison on size characterization of SiO2 airborne nanoparticles using on-line and off-line measurement techniques are discussed. This study was performed in the framework of Technical Working Area (TWA) 34—'Properties of Nanoparticle Populations' of the Versailles Project on Advanced Materials and Standards (VAMAS) in the project no. 3 'Techniques for characterizing size distribution of airborne nanoparticles'. Two types of nano-aerosols, consisting of (1) one population of nanoparticles with a mean diameter between 30.3 and 39.0 nm and (2) two populations of non-agglomerated nanoparticles with mean diameters between, respectively, 36.2–46.6 nm and 80.2–89.8 nm, were generated for characterization measurements. Scanning mobility particle size spectrometers (SMPS) were used for on-line measurements of size distributions of the produced nano-aerosols. Transmission electron microscopy, scanning electron microscopy, and atomic force microscopy were used as off-line measurement techniques for nanoparticles characterization. Samples were deposited on appropriate supports such as grids, filters, and mica plates by electrostatic precipitation and a filtration technique using SMPS controlled generation upstream. The results of the main size distribution parameters (mean and mode diameters), obtained from several laboratories, were compared based on metrological approaches including metrological traceability, calibration, and evaluation of the measurement uncertainty. Internationally harmonized measurement procedures for airborne SiO2 nanoparticles characterization are proposed. KW - Scanning and transmission electron microscopies KW - Atomic force microscopy KW - Scanning mobility particle size spectrometers KW - Metrological traceability KW - SiO2 nano-aerosol size distribution KW - Interlaboratory comparison PY - 2013 DO - https://doi.org/10.1007/s11051-013-1919-4 SN - 1388-0764 SN - 1572-896X VL - 15 IS - 1919 SP - 1 EP - 36 PB - Kluwer CY - Dordrecht AN - OPUS4-29318 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hodoroaba, Vasile-Dan A1 - Benemann, Sigrid A1 - Motzkus, C. A1 - Macé, T. A1 - Palmas, P. A1 - Vaslin-Reimann, S. T1 - Advanced analysis of spherical SiO2 aerosol nanoparticles with a high-resolution SEM KW - Spherical nanoparticles KW - SiO2 KW - SEM KW - Transmission-SEM KW - VAMAS PY - 2012 DO - https://doi.org/10.1017/S1431927612010604 SN - 1431-9276 SN - 1435-8115 VL - 18 IS - Suppl. 2 SP - 1750 EP - 1751 PB - Cambridge University Press CY - New York, NY AN - OPUS4-26749 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hodoroaba, Vasile-Dan A1 - Motzkus, C. A1 - Macé, T. A1 - Vaslin-Reimann, S. T1 - Performance of high-resolution SEM/EDX systems equipped with transmission mode (TSEM) for imaging and measurement of size and size distribution of spherical nanoparticles N2 - The analytical performance of high-resolution scanning electron microscopy/energy dispersive X-ray spectroscopy (SEM/EDX) for accurate determination of the size, size distribution, qualitative elemental analysis of nanoparticles (NPs) was systematically investigated. It is demonstrated how powerful high-resolution SEM is by using both mono- and bi-modal distributions of SiO2 airborne NPs collected on appropriate substrates after their generation from colloidal suspension. The transmission mode of the SEM (TSEM) is systematically employed for NPs prepared on thin film substrates such as transmission electron microscopy grids. Measurements in the transmission mode were performed by using a 'single-unit' TSEM transmission setup as manufactured and patented by Zeiss. This alternative to the 'conventional' STEM detector consists of a special sample holder that is used in conjunction with the in-place Everhart–Thornley detector. In addition, the EDX capabilities for imaging NPs, highlighting the promising potential with respect to exploitation of the sensitivity of the new large area silicon drift detector energy dispersive X-ray spectrometers were also investigated. The work was carried out in the frame of a large prenormative VAMAS (Versailles Project on Advanced Materials and Standards) project, dedicated to finding appropriate methods and procedures for traceable characterization of NP size and size distribution. KW - Transmission scanning electron microscopy/microscope (TSEM, T-SEM, STEM) KW - High-resolution scanning electron microscope (SEM) KW - Transmission KW - SiO2 KW - Nanoparticles KW - Size KW - Size distribution KW - EDX KW - Large area SDD PY - 2014 DO - https://doi.org/10.1017/S1431927614000014 SN - 1431-9276 SN - 1435-8115 VL - 20 IS - 2 SP - 602 EP - 612 PB - Cambridge University Press CY - New York, NY AN - OPUS4-30612 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -