TY - JOUR A1 - Duewer, D. L. A1 - Sander, L. C. A1 - Wise, S. A. A1 - Philipp, Rosemarie A1 - Hein, Sebastian A1 - Hackenberg, R. A1 - Polzer, J. A1 - Avila, M. A. A1 - Serrano, V. A1 - Kakoulides, E. A1 - Alexopoulos, C. A1 - Giannikopoulou, P. A1 - Chan, P. A1 - Lee, H. A1 - Tang, H. A1 - Tang, P. A1 - Yip, Y. A1 - Lu, T. A1 - Cheow, P. S. A1 - Teo, T. L. A1 - Sega, M. A1 - Rolle, F. A1 - Baek, S. A1 - Kim, B. A1 - Lee, S. A1 - Cabillic, J. A1 - Fallot, C. A1 - Hua, T. A1 - Dazhou, C. A1 - Changjun, Y. A1 - Chunxin, L. A1 - Hongmei, L. A1 - Lippa, K. A1 - Itoh, N. A1 - Quinn, L. A1 - Prevoo-Franzsen, D. A1 - Fernandes-Whaley, M. A1 - Gören, A. C. A1 - Gökcen, T. A1 - Gündüz, S. A1 - Krylov, A. A1 - Mikheeva, A. A1 - Baldan, A. A1 - van der Hout, J. W. A1 - van der Veen, A. M. H. T1 - CCQM-K131 Low-polarity analytes in a multicomponent organic solution: Polycyclic aromatic hydrocarbons (PAHs) in acetonitrile JF - Metrologia N2 - Solutions of organic analytes of known mass fraction are typically used to calibrate the measurement processes used to determine these compounds in matrix samples. Appropriate value assignments and uncertainty calculations for calibration solutions are critical for accurate measurements. Evidence of successful participation in formal, relevant international comparisons is needed to document measurement capability claims (CMCs) made by national metrology institutes (NMIs) and designated institutes (DIs). To enable NMIs and DIs to update or establish their claims, in 2015 the Organic Analysis Working Group (OAWG) sponsored CCQM-K131 "Low-Polarity Analytes in a Multicomponent Organic Solution: Polycyclic Aromatic Hydrocarbons (PAHs) in Acetonitrile". Polycyclic aromatic hydrocarbons (PAHs) result from combustion sources and are ubiquitous in environmental samples. The PAH congeners, benz[a]anthracene (BaA), benzo[a]pyrene (BaP), and naphthalene (Nap) were selected as the target analytes for CCQM-K131. These targets span the volatility range of PAHs found in environmental samples and include potentially problematic chromatographic separations. Nineteen NMIs participated in CCQM-K131. The consensus summary mass fractions for the three PAHs are in the range of (5 to 25) μg/g with relative standard deviations of (2.5 to 3.5) %. Successful participation in CCQM-K131 demonstrates the following measurement capabilities in determining mass fraction of organic compounds of moderate to insignificant volatility, molar mass of 100 g/mol up to 500 g/mol, and polarity pKow < −2 in a multicomponent organic solution ranging in mass fraction from 100 ng/g to 100 μg/g: (1) value assignment of primary reference standards (if in-house purity assessment carried out), (2) value assignment of single and/or multi-component organic solutions, and (3) separation and quantification using gas chromatography or liquid chromatography. KW - Benz[a]anthracene (BaA) KW - Benzo[a]pyrene (BaP) KW - Gas chromatography (GC) KW - Isotope dilution (ID) KW - Liquid chromatography (LC) KW - Mass spectrometry (MS) KW - Naphthalene (Nap) KW - Organic calibration solution KW - Polycyclic aromatic hydrocarbon (PAH) PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-471442 DO - https://doi.org/10.1088/0026-1394/56/1A/08003 SN - 0026-1394 SN - 1681-7575 VL - 56 IS - 1A SP - 08003, 1 EP - 102 PB - IOP Science AN - OPUS4-47144 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Westwood, S. A1 - Martos, G. A1 - Josephs, R. A1 - Choteau, T. A1 - Wielgosz, R. A1 - Davies, S. A1 - Moawad, M. A1 - Tarrant, G. A1 - Chan, B. A1 - Alamgir, M. A1 - de Rego, E. A1 - Wollinger, W. A1 - Garrido, B. A1 - Fernandes, J. A1 - de Sena, R. A1 - Oliveira, R. A1 - Melanson, J. A1 - Bates, J. A1 - Mai Le, P. A1 - Meija, J. A1 - Quan, C. A1 - Huang, T. A1 - Zhang, W. A1 - Ma, R. A1 - Zhang, S. A1 - Hao, Y. A1 - He, Y. A1 - Song, S. A1 - Wang, H. A1 - Su, F. A1 - Zhang, T. A1 - Li, H. A1 - Lam, W. A1 - Wong, W. A1 - Fung, W. A1 - Philipp, Rosemarie A1 - Dorgerloh, Ute A1 - Meyer, Klas A1 - Piechotta, Christian A1 - Riedel, Juliane A1 - Westphalen, Tanja A1 - Giannikopoulou, P. A1 - Alexopoulos, Ch. A1 - Kakoulides, E. A1 - Kitamaki, Y. A1 - Yamazaki, T. A1 - Shimizu, Y. A1 - Kuroe, M. A1 - Numata, M. A1 - Pérez-Castorena, A. A1 - Balderas-Escamilla, M. A1 - Garcia-Escalante, J. A1 - Krylov, A. A1 - Mikheeva, A. A1 - Beliakov, M. A1 - Palagina, M. A1 - Tkachenko, I. A1 - Spirin, S. A1 - Smirnov, V. A1 - Tang Lin, T. A1 - Pui Sze, C. A1 - Juan, W. A1 - Lingkai, W. A1 - Ting, L. A1 - Quinde, L. A1 - Yizhao, C. A1 - Lay Peng, S. A1 - Fernandes-Whaley, M. A1 - Prevoo-Franzsen, D. A1 - Quinn, L. A1 - Nhlapo, N. A1 - Mkhize, D. A1 - Marajh, D. A1 - Chamane, S. A1 - Ahn, S. A1 - Choi, K. A1 - Lee, S. A1 - Han, J. A1 - Baek, S. A1 - Kim, B. A1 - Marbumrung, S. A1 - Jongmesuk, P. A1 - Shearman, K. A1 - Boonyakong, C. A1 - Bilsel, M. A1 - Gündüz, S. A1 - Ün, I. A1 - Yilmaz, H. A1 - Bilsel, G. A1 - Gökçen, T. A1 - Clarkson, C. A1 - Warren, J. A1 - Achtar, E. T1 - Mass fraction assignment of Bisphenol-A high purity material JF - Metrologia N2 - The CCQM-K148.a comparison was coordinated by the BIPM on behalf of the CCQM Organic Analysis Working Group for NMIs and DIs which provide measurement services in organic analysis under the CIPM MRA. It was undertaken as a "Track A" comparison within the OAWG strategic plan. CCQM-K148.a demonstrates capabilities for assigning the mass fraction content of a solid organic compound having moderate molecular complexity, where the compound has a molar mass in the range (75 - 500) g/mol and is non-polar (pKow < −2), when present as the primary organic component in a neat organic solid and where the mass fraction content of the primary component in the material is in excess of 950 mg/g. Participants were required to report the mass fraction of Bisphenol A present in one supplied unit of the comparison material. Participants using a mass balance method for the assignment were also required to report their assignments of the impurity components present in the material. Methods used by the seventeen participating NMIs or DIs were predominantly based on either stand-alone mass balance (summation of impurities) or qNMR approaches, or the combination of data obtained using both methods. The results obtained using thermal methods based on freezing-point depression methods were also reported by a limited number of participants. There was excellent agreement between assignments obtained using all three approaches to assign the BPA content. The assignment of the values for the mass fraction content of BPA consistent with the KCRV was achieved by most of the comparison participants with an associated relative standard uncertainty in the assigned value in the range (0.1 - 0.5)%. KW - Bisphenol-A KW - Purity assessment KW - Interlaboratory key comparison KW - Metrology PY - 2021 DO - https://doi.org/10.1088/0026-1394/58/1A/08015 VL - 58 IS - 1A SP - 08015 PB - IOP Publishing AN - OPUS4-54188 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zhang, X. A1 - Zhang, S. A1 - Lu, J. A1 - Tang, F. A1 - Dong, K. A1 - Yu, Z. A1 - Hilger, A. A1 - Osenberg, M. A1 - Markötter, Henning A1 - Wilde, F. A1 - Zhang, S. A1 - Zhao, J. A1 - Xu, G. A1 - Manke, I. A1 - Sun, F. A1 - Cui, G. T1 - Unveiling the Electro-Chemo-Mechanical Failure Mechanism of Sodium Metal Anodes in Sodium–Oxygen Batteries by Synchrotron X-Ray Computed Tomography JF - Advanced Functional Materials N2 - Rechargeable sodium–oxygen batteries (NaOBs) are receiving extensive research interests because of their advantages such as ultrahigh energy density and cost efficiency. However, the severe failure of Na metal anodes has impeded the commercial development of NaOBs. Herein, combining in situ synchrotron X-ray computed tomography (SXCT) and other complementary characterizations, a novel electro-chemo-mechanical failure mechanism of sodium metal anode in NaOBs is elucidated. It is visually showcased that the Na metal anodes involve a three-stage decay evolution of a porous Na reactive interphase layer (NRIL): from the initially dot-shaped voids evolved into the spindle-shaped voids and the eventually-developed ruptured cracks. The initiation of this three-stage evolution begins with chemical-resting and is exacerbated by further electrochemical cycling. From corrosion science and fracture mechanics, theoretical simulations suggest that the evolution of porous NRIL is driven by the concentrated stress at crack tips. The findings illustrate the importance of preventing electro-chemo-mechanical degradation of Na anodes in practically rechargeable NaOBs. KW - Synchrotron radiation KW - X-ray imaging KW - NaO-battery PY - 2024 DO - https://doi.org/10.1002/adfm.202402253 SN - 1616-301X SP - 1 EP - 12 PB - Wiley VHC-Verlag AN - OPUS4-59820 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Blaker, J. J. A1 - Anthony, David B. A1 - Tang, G. A1 - Shamsuddin, S.-R. A1 - Kalinka, Gerhard A1 - Wienrich, Malte A1 - Abdolvand, Amin A1 - Shaffer, M. S. P. A1 - Bismarck, A. T1 - Property and shape modulation of carbon fibers using lasers JF - ACS Applied Materials & Interfaces N2 - An exciting challenge is to create unduloid-reinforcing fibers with tailored dimensions to produce synthetic composites with improved toughness and increased ductility. Continuous carbon fibers, the state-of-the-art reinforcement for structural composites, were modified via controlled laser irradiation to result in expanded outwardly tapered regions, as well as fibers with Q-tip (cotton-bud) end shapes. A pulsed laser treatment was used to introduce damage at the single carbon fiber level, creating expanded regions at predetermined points along the lengths of continuous carbon fibers, while maintaining much of their stiffness. The range of produced shapes was quantified and correlated to single fiber tensile properties. Mapped Raman spectroscopy was used to elucidate the local compositional and structural changes. Irradiation conditions were adjusted to create a swollen weakened region, such that fiber failure occurred in the laser treated Region producing two fiber ends with outwardly tapered ends. Loading the tapered fibers allows for viscoelastic energy dissipation during fiber pull-out by enhanced friction as the fibers plough through a matrix. In these tapered fibers, diameters were locally increased up to 53%, forming outward taper angles of up to 1.8°. The tensile strength and strain to failure of the modified fibers were significantly reduced, by 75% and 55%, respectively, ensuring localization of the break in the expanded region; however, the fiber stiffness was only reduced by 17%. Using harsher irradiation conditions, carbon fibers were completely cut, resulting in cottonbud fiber end shapes. Single fiber pull-out tests performed using these fibers revealed a 6.75-fold increase in work of pull-out compared to pristine carbon fibers. Controlled laser irradiation is a route to modify the shape of continuous carbon fibers along their lengths, as well as to cut them into controlled lengths leaving tapered or cotton-bud shapes. KW - Composite KW - Irradiation KW - Pull-out tests KW - Pulsed laser treatment KW - Single carbon fibers PY - 2016 DO - https://doi.org/10.1021/acsami.6b05228 SN - 1944-8244 SN - 1944-8252 VL - 8 IS - 25 SP - 16351 EP - 16358 PB - ACS Publications CY - 1155 Sixteenth Street, NW, Washington, DC 20036, USA AN - OPUS4-37699 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tang, S. A1 - Wachtendorf, Volker A1 - Klack, Patrick A1 - Qian, Lijun A1 - Dong, Y. A1 - Schartel, Bernhard T1 - Enhanced flame-retardant effect of montmorillonite/phosphaphenanthrene compound in an epoxy thermoset JF - RSC Advances N2 - A phosphaphenanthrene and triazinetrione group containing flame retardant (TAD) is combined with organically modified montmorillonite (OMMT) in epoxy resin thermosets (EP) to improve the performance of the flame-retardant system. When only 1 wt% OMMT/4 wt% TAD is introduced into the EP, the limited oxygen index (LOI) rises from 26% to 36.9% and a V-0 rating is achieved in a UL 94 test. The decomposition and pyrolysis products in the gas phase and condensed phase were characterized using thermogravimetry-Fourier transform infrared spectroscopy (TG-FTIR). The influence on the decomposition of EP, such as the increase in char yield, is limited with the incorporation of OMMT; a large amount of the phosphorus is released into the gas phase. The flame-retardant effect evaluation based on cone calorimeter data testified that OMMT improves the protective-barrier effect of the fire residue of OMMT/TAD/EP on the macroscopic scale, while TAD mainly causes flame inhibition. The fire residues showed a corresponding macroscopic appearance (digital photo) and microstructure (scanning electron microscope [SEM] results). The protective barrier effect of OMMT and the flame-inhibition effect of TAD combined to exert a superior flame-retardant effect, resulting in sufficient flame-retardant performance of OMMT/TAD/EP KW - Flame retardant KW - Nanocomposite KW - DOPO KW - Thermoset KW - Epoxy resin KW - TG-FTIR PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-388865 DO - https://doi.org/10.1039/c6ra25070j SN - 2046-2069 VL - 7 IS - 2 SP - 720 EP - 728 AN - OPUS4-38886 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -